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ABSTRACT 
 
Detection and tracking of a varying number of people is very essential in surveillance sensor systems. In 
the real applications, due to various human appearance and confessors, as well as various environmental 
conditions, multiple targets detection and tracking become even more challenging.  During this year, 
our major contributions of multiple targets detection and tracking are as follows: Firstly, we extend the 
Particle Filter Gaussian Process Dynamical Model (PF-GPDM) to track multiple targets in complex 
visual environment. With the PF-GPDM, a high-dimensional training target trajectory data set of the 
observation space is projected to a low-dimensional latent space through Probabilistic Principal 
Component Analysis (PPCA), which will then be used to classify test object trajectories, predict the 
next motion state, and provide Gaussian Process dynamical samples for the particle filter. In addition, 
Histogram-Bhattacharyya and GMM Kullback-Leibler are employed respectively, and compared in the 
particle filter as complimentary features to coordinate data used in GPDM.  Experimental tests are 
conducted on the PETS2007 benchmark data set.  The test results demonstrate that the approach can 
track more than four targets with reasonable run-time overhead and performance. Secondly, we propose 
a new framework integrating a multiple-stage Histogram of Oriented Gradients (M-HOG) based human 
detector and the Particle Filter Gaussian Process Dynamical Model (PF-GPDM) for multiple targets 
detection and tracking. The multiple-stage HOG human detector takes advantage from both the HOG 
feature set and the human motion cues. The detector enables the framework detecting new targets 
entering the scene as well as providing potential hypotheses for the particle sampling in the PF-GPDM. 
After processing the detection results, the motion of each new target is calculated and projected to the 
low dimensional latent space of the GPDM to find the most similar trained motion trajectory.  In 
addition, the particle propagation of existing targets integrates both the motion trajectory prediction in 
the latent space of GPDM and the hypotheses detected by the HOG human detector.  Experimental tests 
are conducted on the IDIAP data set. The test results demonstrate that the proposed approach can 
robustly and efficiently detect and track a varying number of targets. 
 
Keywords: GPDM, Particle Filter, Complex Environment, Multiple-Stage HOG Human Detector 
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1. INTRODUCTION AND RELATED WORK 
 
1.1 Multiple Human Tracking in Complex Visual Environment 
 
Multiple targets tracking in complex visual environment is a very important issue in the surveillance sensor 
systems, which have attracted considerable attention in recent years.  In many real applications, such as 
surveillance systems in the airport, the camera monitoring area is always crowded with large amount of 
different people, who may be occluded with each other and  have complex motion behaviors.   Multiple targets 
tracking is challenging in such complex scenes. One general approach for multiple target tracking is particle 
filters, which is able to deal with in deterministic, non-linear, non-Gaussian motions and accessible for multi-
modal sensor fusion.  However, joint particle filters can normally track up to three or four identical targets due 
to the exponential complexity. In this work, we present a novel particle filter tracking framework integrated 
with Gaussian Process Dynamic Model [1] (GPDM) for multiple targets tracking in complex visual 
environment. Based  on the assumption that most  human  have  similar  motion  trajectory  patterns in a 
particular  environment,  we apply  GPDM  to learn  a low dimensional  motion trajectory representation in the 
latent space by training the extracted high dimensional human  motion data in the observation space.  A particle 
filter tracking framework is then formulated during the tracking process, and the motion pattern of each target is 
projected to the latent space.  By sampling around the latent space, the most similar motion trajectory will be 
determined and mapped back to the observation space. The back projected motion trajectory will be used for 
each particle to evaluate the appearance feature in the observation space.  In addition, the Markov Dynamic in 
this latent space will increase the prediction accuracy for each particle. 
In contrast to traditional methods of the multiple targets tracking, the major novelty of our PF-GPDM is 
integrating the particle filter framework with GPDM, which can provide prior trained motion trajectory for the 
each particle and makes the efficient multiple targets tracking in a complex scene possible. GPDM has the 
advantage of projecting high-dimensional observation motion data to low dimensional latent space as well as 
mapping the subspace data back to the observation space.  This allows our framework to utilize back projected 
similar motion information to reduce the sampling ambiguity and improve the particle efficiency. Moreover, the 
Markov Dynamic in the latent space models the time-series motion smoothly. We extend our previous work 
[2,3] by performing targets tracking in complex visual environment with more crowded people and targets 
having different motion behaviors  and occlusion.  In addition, instead of manually initializing the motion 
trajectory, our framework can automatically determine the initial motion pattern by employing the normal 
particle filter tracking in the first five frames for the new targets. 
 
1.2 Multiple Human Detection and Tracking Using Multiple-Stage HOG Detector and PF-GPDM 
 
In order  to automatically detect  different  targets  entering  or leaving  the scene, we proposed  a new 
framework which  integrated HOG  feature based  human  detection and  the PF-GPDM for tracking multiple 
targets. By incorporating the HOG human detector with particle filter tracking, the framework takes the 
advantage both from detection and tracking, which greatly improves the performance of multiple targets 
tracking.  
 
This framework extends our previous work3 based on the PF-GPDM, in which we used the pre-trained motion 
trajectories and sampling in the latent space to reduce the particle sampling complexity. This makes it possible 
for real time multiple targets tracking in the particle filter framework. However, each target’s initial position 
needs to be marked manually before performing tracking. 
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Our approach to multiple human tracking is to make use of both detection and tracking cues. The main features 
of our approach are as follows: Firstly, we implement an efficient mechanism to compute the possible targets’ 
positions in the motion frame. Then we combine human motion cues with the HOG feature set for human 
detection, which greatly improves the detection rate and reduced the computational cost for multiple targets 
detection in video sequences. Secondly, we integrate the HOG human detector with the PF-GPDM tracking 
framework. On one hand, the HOG human detector can automatically identify a new person entering the 
monitoring scene as well as providing potential hypothesis for particle tracking. On the other hand,  particle 
filter tracking provides human motion information for existing targets, which can be used for localizing possible 
human  position for the HOG human  detector, thus greatly reduces the computational cost for the HOG human 
detection. 
 
1.3 Related Work 
 
Gaussian Process Latent Variable model [4] (GPLVM) developed by Neil Lawrence in 2006 provided 
probabilistic mapping from high-dimensional observation data to low-dimensional latent space, which 
represented the joint distribution of observation data.  Compare  to other dimensional  algorithms, such  as  LLE 
[5],  ISOMAP [6],  GPLVM  has  the advantage  to project  the latent data back  to observation  space.  Wang et 
al. incorporates  Markov  dynamics on latent variable state transitions lending  Gaussian  Process Latent 
Variable Model to handle  time series data and  robustly track human  body  motion and  pose changes  by 
classifying poses and  motions. Leonid et al. [1] proposed a Gaussian  process annealing-particle-filter-based 
method  to perform 3D target tracking by exploring color histogram features [7], while he focused on pose 
reconstruction rather than human trajectory tracking.   A real time body particle tracking framework was 
introduced by Hou [8] to capture human motion. However, he aimed to track complex motion of one target and 
used the motion data for the pose estimation. 
 
Human detection has attracted much attention in recent years. Human detection can be treated as a classification 
problem. Two main steps for solving this problem are feature extraction and learning.   However, as human 
body shapes are non-rigid, and may have various appearances due to different pose and clothing, human 
detection is still a challenging task in computer vision research. Viola et.al [9] applied the Haar-Like feature for 
pedestrian detection, in which both the appearance and motion information were used.  Jones et al. [10] 
extended their work by using many more frames as input to the detector and achieved a more detailed analysis 
of motion. In [11] Dalal and Triggs proposed the histogram of oriented gradients feature for human detection in 
images. Their experiment results showed that the HOG feature outperform existing feature set in the human 
detection. Zhu et.al [12] showed that the combination of the cascade of rejecters approach and the HOG features 
led to a fast and accurate human detection system. They used AdaBoost for selecting the best blocks for human 
detection. They claimed that their system can nearly achieve real time performance. 
 
Particle filter is a general approach used in multiple targets tracking. Khan et.al proposed a MCMC  based 
particle filter for tracking multiple interacting ants [13], while ant have less shape change  comparing to human. 
K. Smith also provided a particle framework for tracking varying number targets [14]. Multiple objects were 
formulated by a joint state-space model while efficient sampling is performed by deploying trans-dimensional 
MCMC on the subspace. It failed to track some targets due to the weakness of color models. 
 
Our jointed detection and tracking framework was directly inspired by the Boosted particle which was 
introduced by K. Okuma [15]. To track multiple human objects simultaneously, K. Okuma integrated a Boosted 
classifier with particle framework together, in which Boosted classifier is used to detect different hockey 
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players and pro- vide hypothesis for each particle. In general, the aforthmentioned particle frameworks all take 
the advantage of the relatively simple environment, such as ground, hockey play rink, or fixed background. 
 

2. MULTIPLE HUMAN TRACKING IN COMPLEX VISUAL ENVIRONMENT 
 
2.1   Particle Filter and GPDM 
A particle filter is a Monte Carlo method for non-linear, non-Gaussian models, which approximates continuous 
probability density function by using large number of samples, i.e., discrete distribution approximation. Hence 
the accuracy of the approximation depends on high dimensional state space which causes exponential increase 
of the number of particles. Given the time complexity constraint, the reduction of particles, and hence the 
computation power is a potential solution.  Once a GPDM is created, sampling from the dynamical field 
provides meaningful prediction on the future motion changes.  In GPDM, an observation space vector 
represents a pose configuration and motion trajectory captured by a sequence of poses. The latent space defines 
the temporal dependence between poses by employing Gaussian Process integrated by Markov Chain on the 
latent variable transitions. Since motion prediction, the temporal dependence and sampling are performed on the 
latent space, potential computation benefits may be obtained. 
 
2.2   Gaussian Process Dynamical Model Particle Filter 
 
This  research  aims at developing  a low complexity  and  highly efficient  algorithm  for tracking  Multiple  
targets in the complex  environment. Since the tracking environment is complex, the prior trajectory 
information can help to track each target efficiently and robustly.  Future more, with the general framework of 
GPDM, it can be extended to estimate pose and motion changes as proposed by Wang et al.  Hence, if a target is 
suspected of malicious behavior, the system can trade performance off time complexity. 
 
The basic procedure of the proposed Particle Filter Gaussian Process is as follows. 
 
 

1.  Creating   GPDM:   GPDM is created on the basis of the trajectory training data sets, i.e., coordinate 
difference values,  and  the learning  model  parameters Γ = {YT , XT , , ,W }, where  YT is the 
training observation data set,  XT is the corresponding  latent variable  sets,  and   are 
hyperparameters, and  W is a scale parameter. 
 
2.  Initializing  the model parameters and the particle  filter:  The latent variable set of the training data 
and parameters {XT , , } are obtained by minimizing the negative log-posterior function −lnp(XT , , 

, W |Y T ) of the unknown  parameters {XT , , , W } with scaled conjugate gradient (SCG)  on the 
training datasets. The prior probability is derived on the basis of the created model.   In this step, target 
templates are obtained from the previous frames as reference images for similarity calculation in the 
later stage. 
 
3.  Projecting from the observation  space  to latent  space:  After  initializing  the targets’  position,  
each target will be tracked  by the regular  particle  filter  in the first  5 frames.   Then test observation 
motion pattern data is calculated and projected on the latent coordinate system by using probabilistic 
principal component analysis (PPCA). As a result, the dimensionality of the observed data is reduced. 
 
4.  Predicting and Sampling:  Particles are generated by using GPDM in the latent space and the test data 
to infer the likely coordinate change value (∆xi , ∆yi ). 
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5.  Determining probabilistic mapping from latent space to observation space:  The log posterior 
probability of the coordinate difference values of the test data is maximized to find the best mapping in 
the training data sets of the observation space.  In addition, the most likely coordinate change value (∆xi , 
∆yi ) is used for predicting the next motion. 
 
6.  Updating  the weights:  In the next frame, the similarity between  the template’s corresponding  
appearance model and  the cropped  region centered on the particle is calculated to determine the 
weights wi, and  the most  likely location  (  t+1 , t+1 ) of the corresponding  target, as well as to decide  
whether  re-sampling  is necessary  or not. 
 
7.  Repeat Step 3 - 6. 

 
2.2.1 Observation Space 
 
The targets of interest are detected and tracked for trajectory analysis. Instead of studying the coordinate 
values, the differences of the same target in two neighboring frames are calculated as the observed data. 
The location of the target can be obtained by adding the difference to the previous coordinate values. The 
2D coordinate difference values  of the head, centroid and  feet form a 6 dimensional vector for each 
object, given by Yk   = (∆(x1), ∆(y1), ∆(x2), ∆(y2), ∆(x3), ∆(y3)), where Yk is the observation value of the 
kth target, and (xk + ∆(xk ), yk + ∆(yk )) is the coordinate value of the corresponding body part. With the 3 
sets of coordinate values, the boundary, width and height of an object can be determined. If there are 5 
targets, the observation data has 30 dimensions. 
 
2.2.2 Establishing Trajectory Learning Model and Obtaining Appearance Templates 

 
GPDM is deployed to learn the trajectories of moving objects.  The probability density function of latent variable X and 
the observation variable Y are defined by the following equations, 
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where α is the hyperparameter of kernel, p(x)  can be assumed  to have Gaussian  prior,  N  is the length of latent 
vector,  d is the dimension  of latent space, and KX  is the kernel matrix. 
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where k is the kth target, KY is the kernel function,  and W is the hyperparameter. 

In our study, RBF kernel given by the following is employed for the GPDM model, 
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where x and  x′ are any  latent variables in the latent space,  γ  controls the width  of the kernel,  β
−1 is 

the variance of the noise. 
 
Given a specific surveillance environment, certain patterns may be observed and worth exploring for future 
inferences. To initialize the latent coordinate,  the d (dimensionality of the latent space)  principal directions of 
the latent coordinates is determined by deploying  probabilistic principal  component analysis on the mean-
subtracted training dataset YT , i.e. YT  − mean(YT). Given YT , the learning  parameters are estimated by 
minimizing the negative-log-posterior using scaled conjugate gradient (SCG) [16]. SCG was proposed to 
optimize the multiple parameters of large training sets by deploying  Levenberg-Marquardt approach to avoid 
line-search per learning iteration, which increases calculation complexity. 
 
Besides position training datasets, the appearance database is created by obtaining the template images of 
human head, feet and torso from the initial frames. 

 
Figure 1 Latent space projections of a 2-target training vector sequence 

 
2.2.3 Latent Space Projecting, Predicting and Particle Sampling 
 
Since GPDM  was constructed  in the latent space,  at the beginning  of the test process,  the target observation 
data of first  five frames  has  to be projected  to the same  2-dimensional  latent space  in order  to be compared 
to the trained GPDM.  This projection is achieved by using probabilistic principal component analysis (PPCA), 
same as the first stage in GPDM learning. The feature vector of each frame contains three pairs of coordinate 
change values for every target being tracked in that frame.  For n targets, the feature vector will contain 3 × n 
pairs of coordinate change values. The PPCA projection will reduce this 3 × n × 2 dimensional feature vectors 
to a 1 × 2 latent space vector to be used in particle filtering.  The purpose of projecting the test data from the 
observation space to the latent space is to initialize the testing data in the latent space and obtain a compact 
representation of the similar motion patterns in the training data set.  With PPCA and trained GPDM, we can 
learn certain common motion patterns (e.g. velocities, directions etc.) from multiple training targets, and then 
use the learned latent space motion behavior to predict multiple targets’ future  trajectories using particle filter  
with  much  improved  efficiency.  This is based on the presumption that many human trajectories possess 
similar properties in common video surveillance applications. It should be noted that the number of targets 
being tracked does not need to be identical to that in the training data.  This  is possible because  that PPCA 
aggregates  (or projects)  multiple training objects  as well as test objects  onto  the same low dimensional space, 
and  therefore the number  of objects  does not pose a constraint on the tracking process.  If we can obtain the 
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templates and the corresponding initial coordinates of n objects at the beginning of the test phase, the proposed 
framework can track these n targets regardless the number of training targets. 
 
Particles are generated on the basis of the Gaussian process dynamical model in the latent space, taking the 
motion model property and unpredictable motion into consideration. The next possible position is predicted by 
determining the most similar trajectory pattern in the training database and using the corresponding position 
change value plus noise. The number of particles is reduced from over one hundred to about twenty by deriving 
the posterior distribution over functions, instead of parameters, and taking advantage of the learned knowledge. 
The simulation indicates that the decreasing number of particles does not compromise the tracking results, even 
in temporary occlusion cases.  An example of the learned GPDM space is shown in Figure 1. Each point on this 
2D latent space is a projection of a feature vector representing two training targets, i.e., 6 pairs of coordinate 
change values.  A total of 72 points in the figure correspond to feature vectors of these two targets over 73 
image frames.   The grayscale intensity represents the precision of mapping from the observation space to the 
latent space, and the lighter the pixel appears the higher the precision of mapping is. 
 
2.2.4 Mapping from Latent Space to Observation Space 
Thereafter, the latent variables are mapped in a probabilistic way to the location difference data in the 
observation space, defining the active region (i.e., distribution) of an observed target. However, the exact 
predicted coordinate values of the motion trajectory in the observation space need be calculated so that the 
importance weight for each particle in the observation space can be updated. Estimation maximization (EM) 
approach is employed to determine the most likely observation coordinates in the observation space after the 
distribution is derived. The non-decreasing log posterior probability of the test data is given by 
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where W is the hyperparameter, N  is the number  of Y  sequences, D is the data dimension of Y , KY   is a 
kernel matrix defined by a RBF  kernel function  given by the equation (3).  The log posterior probability is 
maximized to search for the most probable correspondence on the training datasets.  The corresponding 
trajectory pattern is then selected for predicting the following motion.  The simulation results show that it 
returns better prediction results than averaging the previous motion values.  In addition, various targets can 
share the same database to deal with different future situations. 
 
2.2.5 Importance Weights Update 
 
The weights of the particles are updated in terms of the likelihood estimation based on the appearance model. 
The importance weight equation is given by 
 

t t t t t
t t t

t

ˆ ˆP( Z | k ,Y )P( k ,Y )ˆP(Y | Z ,k )
P( Z )

=

                                                                    (5) 

t t t t t t
ˆ ˆP( Z | k ,Y )P( k ,Y )! "                                                                                     (6) 

where t  is the estimation data, Zt  is the observation data, kt  is the identity of the target, and wt  is the weight 
of a particle. In our study,  the likelihood function  P (Zt |kt , t ) is defined  to be dependent  on the similarity 
between  the appearance model distribution  of the template  and  that of the test object. Therefore, the choice of 
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appearance model is important for updating the weights of particles.  Edge feature is not used in this study due 
to its ambiguity in term of foreground and background, as well as the computation efficiency consideration. 
Histogram-Bhattacharya, GMM-KL Appearance Model, and rotation invariant model were tested to determine 
the resulting performance and time complexity. 
 
2.3   Histogram-Bhattacharyya and GMM-KL Appearance Model 
 
Histogram-Bhattacharyya was used for its simplicity and efficiency.  The RGB histogram of the template and 
the image region under consideration are obtained respectively. The likelihood P (Zt |kt, t)  is defined  to be 
proportional to the similarity between  the histogram of the template and the candidate, i.e. the region centered 
on the considered particle of the same size as the template.  The above-mentioned similarity is measured by 
using Bhattacharyya distance, since it provides complex nonlinear correlations between distributions. 
 
Gaussian Mixture Model-Kullback-Leibler (GMM-KL) approach is also employed to measure the similarity 
between the image and the test object’ template. GMM is a semi-parametric multimodal density model 
consisting of a number of components to compactly represent pixels of image block in color space with 
illumination changes. Image can be represented as a set of homogeneous regions modeled by a mixture of 
Gaussian distributions in color feature space [17]. The Kullback-Leibler  distance is a  measure  of the distance 
between  two probability distributions given the metric  of relative entropy [18]. Since the image approximated 
by Gaussian mixture model can be considered as independently identically distributed (iid) samples following 
Gaussian mixture distribution, comparison  of the template image to that of the test image is formulated as 
measuring  the distance between  the two Gaussian  mixture distributions. 
 
2.4   Simulation Results and Discussion 
 
The  proposed PF-GPDM was implemented by using MATLAB running on a desktop of 2.33GHz  Intel Core2 
Duo PC with 2GB memory and tested on the PETS 2007 datasets [19] Neil Lawrence’s Gaussian Process 
software provides the related GPDM functions for conducting simulations [20]. 
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Figure 2 Sampling result of tracking 5 targets using Histogram-Bhattacharya approach 

 
The experiments were designed to evaluate the performance of the proposed PF-GPDM method under complex 
environment, as well as on targets with occlusions.  The performance measures include sample image frames 
labeled with tracking results, error rate, and runtime. Error rate is defined as the percentage of frames that 
contain one or more miss-tracked target. Table 1 summarizes the experimental results in terms of % error rate 
and runtime. 
 
 

Frames Targets Appearance Model Runtime %Error  Rate 
70 
70 
80 

5 
5 
4 

Histogram GMM 
Histogram 

204 sec 
418 sec 
300 sec 

6.68% 
2.84% 
3.14%  

Table 1 Tracking %Errors on two types of sequences 
 
 
The training dataset consists of four sequences from the PETS dataset with a total of 276 frames.  One target in 
each sequence is identified and tracked to build up a latent space trajectory database. The selected  PETS test 
dataset includes  one sequence of seventy frames with five walking people  with  different  motion  behavior 
and another sequence of eighty frames with four walking people, which contain several temporary occlusion. 
The background of selected sequences are blurred and crowded with different people and different motion 
behaviors. 
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For the first sequence with five targets, we apply our PF-GPDM with two different appearance models, GMM- 
KL and Histogram-Bhattacharyya. The tracking results are shown in the Figure 2 and Figure 3. Our experiment 
indicates that the GMM-KL is more discriminative in terms of the blurred background and the targets, 
compared to the Histogram model.  However, the Histogram-Bhattacharyya approach is more efficient in the 
computation time. 
 
In the second sequence, several temporary occlusions occur among the four targets.  The man who walked 
toward to the right overlapped three times with the women.  Figure 4 shows that temporary occlusions in the 
test sequence are resolved successfully and each target is tracked correctly with different colored bounding 
boxes. The yellow bounding box in the last frame of Figure 4 indicates a missing target case of our framework.   
It should be noted that the number of particles is 20 for each target in our PF-GPDM, thus it’s more efficient 
than conventional particle methods. 
 

 
Figure 3 Sampling result of tracking 5 targets using GMM-KL approach 
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Figure 4 Sampling result of tracking 4 targets with occlusion 

 
3. MULTIPLE HUMAN DETECTION AND TRACKING BY USING MULTIPLE-STAGE HOG 

DETECTOR AND PFGPDM 
 
3.1 Multiple-Stage HOG Detector and PFGPDM 
 
In this paper, we combine the Multiple-Stage HOG human detector and the PFGPDM together to improve the 
robustness for multiple targets tracking. Besides identifying the new targets entering the scene the Multiple-
Stage Human detector can help the tracker to detect the overlapped targets under temporary occlusion.  In 
addition, the learned motion information from the PFGPDM tracker can reduce the false alarm of the HOG 
human detector. 
 
3.2   Appearance Model 
 
Gaussian Mixture Model-Kullback-Leibler (GMM-KL) approach is employed to measure the similarity 
between the image and the test object’ template. GMM is a semi-parametric multimodal density model 
consisting of a number of components to compactly represent pixels of image block in color space with 
illumination changes. Image  can  be  represented  as  a  set  of homogeneous  regions  modeled  by  a  mixture  
of Gaussian  distributions in color feature space [17]. The Kullback-Leibler distance is a measure of the distance 
between two probability distributions given the metric of relative entropy [18]. Since the image approximated 
by Gaussian Mixture model can be considered as independently identically distributed (iid) samples following 
Gaussian Mixture distribution, comparison  of the template image to that of the test image is formulated as the 
distance measure  between  the two Gaussian mixture distributions. 
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3.3   The Procedure of Proposed Framework 
 
The basic procedure of the proposed HOG human detector and the Particle Filter Gaussian Process Dynamical 
Model is shown in the Figure 5. 

 
 

Figure 5 The procedure of detection and tracking framework 
 
1.  Creating   GPDM:   GPDM is created on the basis of the trajectory training data sets, i.e. ,  coordinate 
difference values,  and  the learning  model  parameters Γ = {YT , XT , , , W },  where  YT   is the training 
observation data set,  XT  is the corresponding  latent variable sets,  and   are hyperparameters, and  W is a 
scale parameter. 
 
2.  Initializing  the model parameters and the particle  filter:  The latent variable set of the training data and 
parameters {XT , , } are obtained by minimizing the negative log-posterior function −lnp(XT , , , W |YT ) 
of the unknown  parameters {XT , , ,  W } with scaled conjugate gradient (SCG)  on the training datasets. 
The prior probability is derived on the basis of the created model. In this step, target templates are obtained 
from the previous frames as reference images for similarity calculation in the later stage. 
 
3.  Multiple-Stage HOG human detection:   For each incoming frame, motion frame is computed first to get the 
possible targets’ region in the current frame. The HOG human detector is applied to determine the human target 
in the scene.  For every 5 frames, the whole region of frame is scanned by HOG human detector in case we miss 
some stationary targets. 
 
For the new targets: 
 
Extract the observation motion data:   If a new target is detected, the target will be tracked by the regular 
particle filter in the first 5 consecutive frames.  The target’s position in the first five frames then is stored as the 
observation motion pattern data. 
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Projecting from the observation space to the latent space:  The observation motion pattern data is calculated and 
projected on the latent coordinate system by using probabilistic principal component analysis (PPCA). As a 
result, the dimensionality of the observed data is reduced. 
 
Predicting and Sampling: Particles are generated by using GPDM in the latent space  and  the test data to infer 
the likely coordinate change value (∆xi , ∆yi). 
 
Determining probabilistic mapping from latent space to observation space:  The log posterior probability of the 
coordinate difference values of the test data is maximized to find the best mapping in the training data sets of 
the observation space. 
 
In addition, the most likely coordinate change value (∆xi, ∆yi) is used for predicting the next motion. 
 
For the existed targets: 
 
Compute the prediction by using sampled trajectory If the detected target has already tracked by the particle 
filter framework, then we will used it for updating the particle weights 
 
4.  Updating the weights:  In the next frame, the similarity between the template’s corresponding appearance 
model and the cropped region centered on the particle is calculated.   To  determine the weights  wi , and the 
most  likely location  ( t+1 , t+1 ) of the corresponding  target, both  the HOG  human  detection result and  the 
particle prediction are considered. We used a weighted and linear combination of both from the similarity 
function and detection result.  . 
 
5.  Repeat Step 3 - 5. 
 
3.3.1 Multiple-Stage HOG Human Detection 
 
In this step, the motion cues in the motion frame are calculated. Then the HOG human detector focuses on these 
possible regions.  In case of missing new targets, the detector will scan the whole image at every five frames.  
The HOG human detection is very essential in our framework.   After determining the location of a target, we 
first check whether it contain the region which includes targets in the previous frame.  If not, it will be 
recognized as a new target entering the scene, otherwise we treat it as an existing target and use the tracking 
motion trajectory to refine the detection results. 
 
3.3.2 Observation Space 
 
The new targets of interest are detected and tracked for trajectory analysis.  Instead of studying the coordinate 
values, the differences of the same target in two neighboring frames are calculated as the observed data.  The 
location of the target can be obtained by adding the difference to the previous coordinate values.   The  2D 
coordinate  difference values  of the head,  centroid  and  feet form a 6 dimensional  vector  for each  object,  
given by Yk   = (∆(x1 ), ∆(y1 ), ∆(x2 ), ∆(y2 ), ∆(x3 ), ∆(y3 )),  where  Yk   is the observation  value  of the kth 
target, and (xk  + ∆(xk ), yk + ∆(yk )) is the coordinate value of the corresponding  body part. With the 3 sets of 
coordinate values, the boundary, width and height of an object can be determined.  If there are 5 targets, the 
observation data has 30 dimensions. 
 
3.3.3 PFGPDM Initialization and Projection 
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GPDM is deployed to learn the trajectories of moving objects.   The probability density function of the latent 
variable X and the observation variable Y are defined by the equation (1). 
In our study, RBF kernel given by the following is employed for the GPDM model, which is defined in the 
equation (2),  where x and  x′  are any  latent variables  in the latent space,  γ  controls the width  of the kernel,  
β−1  is the variance  of the noise. 
 
3.3.4 Importance Weights Update 
 
The weights of the particles are updated in terms of the likelihood estimation based on the appearance model. 
The importance weight equation is given by 
 

1t t t t t
t t t HOG

t

ˆ ˆP( Z | k ,Y )P( k ,Y )ˆP(Y | Z ,k ) ( )P
P( Z )

! != + "

                                     (7) 

t t t t t t
ˆ ˆP( Z | k ,Y )P( k ,Y )! "                                                                                 (8) 

 
where t is the estimation data, Zt is the observation  data, kt is the identity of the target, and wt  is the weight of 
a particle, and PHOG  is the likelihood of the HOG detection for the existing object, which represents the 
confidence of human  detection. The parameter α can be set dynamically depending on the tracking situations, 
including collisions or occlusions.  When α = 1, our framework regresses to the PF-GPDM. We can place more 
attention to the HOG human detection by increasing α.  Such as in the occlusion situation, large value of α can 
find overlapped targets and improve the tracking performance. 
In our study, the likelihood function P (Zt |kt , t) is defined to be dependent  on the similarity  between  the 
appearance model distribution of the template and that of the detected object as well as the posterior probability 
of the HOG  detection.  Therefore, the choice of appearance model is important for updating the weights of 
particles.  In this paper, a GMM-KL Appearance Model is tested to determine the resulting performance and 
time complexity. 
 
3.4   Experimental Results and Discussion 
 
The  proposed  framework  was implemented  by using  MATLAB  running  on a desktop  of 2.33GHz  Intel  
Core2 Duo PC with 2GB memory.  The human motion trajectory of the PFGPDM is trained on the PETS [19] 
and Neil Lawrence’s Gaussian process software provides related GPDM functions for conducting simulations 
[20]. 
 
3.4.1 HOG Human Detection Results 
 
To train the HOG human detector, we used the INRIA data set, which contains various human in different 
scenarios.  By following the instruction in the [11], we get the trained human detector. However, when we 
directly apply the HOG detector on the selected sequences of IDIAP data set, the detection rate is relatively 
lower (about 76%).   Figure 6(a) shows one of the false detection results, in which the second left target was not 
detected successfully.   However, for each new target entering the scenario, the HOG human detector can 
identify it correctly. Figure 6(b) shows the detection results of Multiple-Stage Human detector. Although there 
still exists some overlapping detection windows of the same targets, all the pedestrians have been identified in 
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the whole image. Comparing to original HOG human detector, the detection rate increases to 93% in the IDIAP 
data set. 

 
(a) HOG human detector                                 (b) Multiple-Stage HOG human detector 

Figure 6 Detection results of four people 
 
3.4.2 Jointed Detection and Tracking Results 
 
The first sequence contains 132 frames.  Figure 7 shows our framework detects and tracks two targets correctly. 
Although the camera is fixed, the background is changing as the car entering the scene. If we only use the 
motion information for detection, the human target will not be detected correctly.   Frame 1 and Frame 67 
shows that our system can detect each new human target correctly.  The other frames show that our framework 
can track each target correctly with temporal occlusion. 
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Figure 7 Sampling results of tracking 2 targets (Frame 1, 40, 67, 95, 106, 132) 
The second sequence contains 112 frames.  Figure 8 shows that our framework detects and tracks two to four 
targets successfully with occlusion and various targets entering and leaving the scene. Although more people 
enter and leave in the sequence, the HOG human detector identifies each new target correctly.   During the 
occlusion situation, the human detector also helps the tracker to identify the correct targets. 
Comparing with the PFGPDM tracking [3] in the second sequence, our current framework reduces the tracking 
error rate from 6.68% to 2.84%.  In addition, the HOG human detector improves the robustness of PFGPDM 
tracking, which means our framework can reliably detect and track more frames than the PFGPDM. 

4. CONCLUSION AND FUTURE WORK 
 
4.1   Conclusion 
 
During this year, we firstly extended the PFGPDM to track multiple targets in complex visual environment; the 
test results demonstrate that the approach can track more than four targets with reasonable run-time. After that, 
we introduced a framework which integrated the Multiple-Stage HOG human detector with the PFGPDM 
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tracker.  The Multiple-Stage HOG human detector improves the detection rate when applying on the IDIAP 
data set, while the PFDPGM can provide additional motion information for human detection after initializing 
the target’s position.  Therefore,  by combining  the tracking and detection together, we can get a good 
performance for multiple targets tracking. 
 
4.2   Future Work 
 
In our current PFGPDM, GPDM is not updated online after being created; we just search the similar motion 
trajectory in the GPDM according the trained data.  One possible future work is to adaptively add the new 
trajectory pattern of test data to the trained GPDM during the multiple targets tracking. Whenever accounted 
new motion trajectory of a target, it will add to our motion trajectory data set.   This will enrich our motion 
trajectory pattern and improve the robustness of our framework. 
In the future, we also want to add adaptive learning for the HOG human detection part, which will online update 
the human classifier and improve the detection rate online.  In addition, we want to improve our tracking 
framework to achieve real time performance. 
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Figure 8 Sampling result of tracking 4 targets (frame 1,42,48,73,88,112) 
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1. Introduction 
During this project period, we have advanced the theoretical understanding of the 
fundamental challenges of the data mining in sensor networks, and developed numerous 
algorithms and models across different application domains. Specifically, our major efforts 
are focused on how to transform large volumes of raw data into information and 
knowledge representation, and how to adaptively learn from such data to support the 
decision-making processes within realistic environments, as well as the network security. 
The following specific problems have been investigated in this project: imbalanced 
learning problems, incremental learning problems, incremental learning for imbalanced 
data stream problems, network intrusion detection, and an FPGA-based, general-purpose, 
multi-task, and reconfigurable platform for video and image processing. In this section, we 
will provide a brief review of the state-of-the-art research related to these topics.  

Learning from imbalanced data (imbalanced learning) has become a critical and 
significant research issue in many of today's data intensive applications, such as financial 
engineering, anomaly detection, biomedical data analysis, and many others [1]. The 
amount and complexity of raw data that is captured to monitor, analyze, and support 
decision-making processes continues to grow at an incredible rate. Consequently, this 
enriches the opportunities for computationally intelligent methods to play an essential role 
in applications involving large amounts of data. On the other hand, these opportunities also 
raise many new challenges for the research community in general. In regards to 
imbalanced learning, the importance and complexity of this problem is reflected in the 
recent installment of dedicated special issue symposiums and conference workshops, such 
as the Association for the Advancement of Artificial Intelligence workshop on Learning 
from Imbalanced Datasets (AAAI'00) [2], the International Conference of Machine 
Learning workshop on Learning from Imbalanced Datasets (ICML'03) [3], and the 
Association for Computing Machinery Special Interest Group on Knowledge Discovery 
and Data Mining explorations (ACM SIGKDD Explorations'04) [4]. 

Generally speaking, any dataset that exhibits an unequal distribution between its 
classes can be considered imbalanced. In real-world applications, datasets exhibiting 
severe imbalances are of great interest since they generally present significant difficulties 
for learning mechanisms. Typical imbalance ratios can range from $1:100$ in fraud 
detection problems [5] to $1:100000$ in high-energy physics event classification [6]. 
However imbalances of this form are just one aspect of the imbalanced learning problem. 
The imbalance learning problem generally materializes in two forms: relative imbalances 
and absolute imbalances [7]. Absolute imbalances arise in datasets where minority 
examples are definitively scarce and underrepresented, whereas relative imbalances are 
indicative of datasets in which minority examples are well represented but remain severely 
outnumbered by majority class examples. Some studies have shown that the degradation of 
classification performance attributed to imbalanced data is not necessarily the result of 
relative imbalances but rather by the lack of representative examples (absolute imbalances) 
[8] [9] [10] [11]. In particular, for a given dataset that contains several sub-concepts, the 
distribution of minority examples over the minority class concepts may yield clusters with 
insufficient representative examples to form a classification rule. This problem of concept 
data representation within a class is also known as the within-class imbalance problem [9] 
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[12] [13] and was verified to be more difficult to handle than datasets with only 
homogeneous concepts for each class [9] [11].  

As follows, we formulate the four main categories of the solutions for imbalanced 
learning problems, and their most popular derived algorithms. 

(1)  Samping methods: 

Building on the foundations of the random (simple) over-sampling and under-sampling 
techniques, researchers have developed advanced sampling methods to address the 
shortcomings of these basic techniques, such as overfitting and information loss. 

One of the more popular forms of advanced sampling, the synthetic sampling 
methods, creates synthetic instances to compensate for skewed distributions. For instance, 
the SMOTE algorithm [14] searches for the nearest neighbors of every minority instance 
and generates synthetic minority data by calculating linear interpolations between an 
original minority class instance and a randomly selected neighbor. Expanding on the 
SMOTE framework, the Borderline-SMOTE algorithm [15] locates those minority class 
examples that reside along the borders between majority and minority classes; this sample 
set is then used to generate synthetic instances similar to the interpolation methods in 
SMOTE. In [16] the DataBoost-IM method is proposed which over-samples both minority 
and majority class examples by synthetically generating instances based on “seed 
examples”, which are generally selected from difficult-to-learn examples. In another 
example, the JOUS-Boost approach [17], fuses the AdaBoost algorithm with 
over/under-sampling by introducing data perturbations (jittering) at every ensemble 
iteration in order to break the “ties” produced by duplicated samples created from simple 
over sampling. 

Another form of advanced sampling deals with minimizing the overlap that can 
arise between classes due to noise or simple over-sampling. Most of these methods use a 
variant of Tomek links [18] to identify overlapping instances. A Tomek link is a pair of 
minimally distanced nearest neighbor examples of opposite classes. Specifically, if two 
instances form a Tomek link then they either both reside on the borderline of the two 
classes or one of them is attributed to noise; therefore, by removing Tomek links noise can 
be suppressed. Similar under-sampling techniques include the edited nearest neighbor 
(ENN) method, which removes examples that differ from two of their nearest neighbors.  
Additionally, algorithms such as  SMOTE+Tomek and SMOTE+ENN [8] integrate these 
under-sampling techniques with SMOTE to address overlapping issues produced by 
SMOTE and improve classification performance. 

In general, the above-mentioned sampling algorithms solely focus on relative 
imbalances; i.e. they do not explicitly confront within-class imbalances. However, as 
mentioned earlier, within-class imbalances have a greater effect on classification 
performance compared to relative imbalances. In an effort to explicitly address the 
within-class imbalance problem, the Cluster Based Over-sampling (CBO) algorithm was 
proposed in [10]. The CBO algorithm over-samples both minority and majority class 
examples by over-sampling (inflating) all majority class clusters other than the largest to be 
the same size as the largest, and inflating all minority class clusters to have an equal 
number of instances given by a proportionality factor. To achieve this, the training data of 
both the minority and majority classes must first be clustered (by the $k$-means algorithm, 
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for instance), and then simple oversampling is performed on a cluster-by-cluster basis. In 
another example of cluster-based sampling, [19] proposed the use of Support Cluster 
Machines to learn sub-concepts while bypassing any inherent within-class over-lapping by 
mapping the feature space to higher dimensions. Each of these sampling algorithms 
introduces different considerations for tackling the imbalanced learning problem. 

(2) Cost-sensitive learning methods 

Cost-sensitive learning methods typically employ the use of cost-matrices to estimate the 
costs of different classification errors. In particular, cost-sensitive learning methods 
facilitate imbalanced learning by assigning different weights to different instances 
according to their misclassification cost. These techniques have shown great success when 
applied to imbalanced learning problems. For example, in [20] an instance-weighting 
method was presented to induce cost-sensitive trees. This method generalizes the standard 
tree induction process by having only the initial instance weights determine the type of 
trees to be induced - minimum error trees or minimum high-cost error trees. In [21] [22], 
the Asymmetric AdaBoost method is proposed to handle the face detection problems for 
which the skewed class ratio can be quite high. The idea of Asymmetric AdaBoost is 
straightforward: the sampling distribution over the training data is modified at the 
beginning of each loop, i.e., the weights of positive examples could be increased. Then 
hopefully, the number of false negatives in the minimum error criteria could be minimized. 
The AdaCost proposed in [23] combines cost-sensitive learning with boosting. By 
referring to the cost-sensitive matrix, AdaCost assigns different cost values to 
misclassified minority and majority examples by the trained hypothesis at each iteration 
loop. In this way, the decision boundary will be forced to move toward the minority 
examples. Additional examples of cost-sensitive learning include the MetaCost method 
proposed in [24] that can make any arbitrary classifier cost-sensitive by wrapping a 
cost-minimizing procedure according to specific requirements, the cost-sensitive neural 
networks proposed in [25] that produce learning algorithms with powerful applicative 
abilities, and the various cost-sensitive techniques fused with support vector machines 
(SVMs) proposed in [26].  

Cost-sensitive learning is a popular solution for imbalanced learning problems, and 
is at times the best alternative for particular domains.  For example, in [26] a cost sensitive 
SVM was used to counter the skewed distributions inherent in face recognition 
applications. The discussions presented in this work highlight a critical shortcoming of 
sampling methods, namely the \emph{preservation of data orientation}. Due to the special 
orientation of facial features, random manipulation of data or random data generation 
cannot provide useful information for face recognition. As a result, data sampling 
techniques were not considered in that work - illustrating the need for a diverse selection of 
methods to handle imbalanced learning problems across different application domains. 

(3) Kernel-based learning methods 

Kernel-based methods have recently become very popular across various fields including 
imbalanced learning. In general, kernel-based methods facilitate learning by maximizing 
the separation margin between concepts in linearly separable feature spaces. More 
specifically, kernel-based methods use kernel-mapping functions to map low dimension 
feature spaces to higher dimension spaces where linear separation is achievable. For 



 6

instance, in [27] [28] the Kernel Based Alignment (KBA) algorithm was proposed in 
which the imbalanced information of the data set is used as information prior to adjusting 
the kernel matrix in order to facilitate SVM learning for improved prediction accuracy. 
Another example of kernel-based learning presents a kernel classifier construction 
algorithm using orthogonal forward selection (OFS) to optimize the generalization model 
for two-class imbalanced learning problems [29]. This is accomplished by using the 
regularized orthogonal weighted least squares (ROWLS) method and a model selection 
criterion of maximal leave-one-out area under curve (LOO-AUC) of the ROC graph. 

(4) Active learning methods 

Active learning methods were originally developed for learning from data sets with 
unlabeled instances. Recently, active learning methods have found increasedly used in 
imbalanced learning applications as well. For example, a SVM based active learning 
approach for imbalanced data sets was proposed in [30] [31]. This algorithm locates a 
“most informative” sample by evaluating a small, fixed number of randomly selected 
examples instead of the entire data set [31]. In [32], the stopping condition for active 
learning applications in word sense disambiguation (WSD) domains was investigated. To 
alleviate the complications introduced by within-class imbalances, this work proposed a 
bootstrap-based oversampling technique (BootOS) to improve active learning performance 
for imbalanced WSD applications. 

Solutions that target both relative and absolute imbalances should logically be more 
adept to handling a wide spectrum of imbalanced learning problems. To this end, we 
propose RAMOBoost, a ranked minority over-sampling technique embedded with a 
boosting procedure to facilitate learning from imbalanced datasets. Based on an integration 
of over-sampling and ensemble learning technique, RAMOBoost systematically generates 
synthetic instances by considering the class ratios of surrounding nearest neighbors of each 
minority class example in the underlying training data distribution. Unlike many existing 
approaches that use uniform sampling distributions, RAMOBoost adaptively adjusts the 
sampling weights of minority class examples according to their data distributions. 
Moreover, by integrating the ensemble learning methodology, RAMOBoost adopts an 
iterative learning procedure which assesses the hypothesis developed at each boosting 
iteration to adaptively shift the decision boundary to focus more attention on those 
difficult-to-learn instances of the both majority and minority classes.  

Incremental learning has also attracted growing attention from both academia and 
industry. Numerous new algorithms and architectures have been developed and 
successfully applied to different domains. For instance, an incremental linear discriminant 
analysis (ILDA) was proposed in [33] to handle the inverse of the within-class scatter 
matrix issue. Based on ILDA, a new algorithm named GSVD-ILDA, the generalized 
singular value decomposition LDA, was proposed and successfully applied to the face 
recognition problem. In [34] [35], incremental learning for autonomous navigation systems 
was presented. Various experiments with mobile robots and a vision-based autonomous 
land vehicle (ALV) in the indoor learning environment were used to demonstrate the 
effectiveness of such learning methods. A study of incremental learning for machine 
intelligence research [36] described various learning and memory architectures that 
achieve high-level intelligence. In [37], a system named SwiftFile was proposed to help 
different users organize their e-mail messages into folders, which can be dynamically 
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adjusted according to users' mailing habits. Some other works on incremental learning and 
its application include the incremental learning fuzzy neural (ILFN) network for fault 
detection and classification in a machinery condition or health monitoring environment 
[38], incremental learning for multi-sensor data fusion [39], incremental genetic learning 
for data classification [40], incremental semi-supervised learning [41], incremental 
learning for human-robot interaction [42], and others. 

There is controversy existing in the community regarding the definition of incremental 
learning. For instance, in [43] [44], whether the previous data can be accessed by the 
current learning process in the scenario of incremental learning was debated. Besides, in 
[45], whether the incremental learning should be motivated to handle the unexpected 
emergent new class, i.e., concept shifting issue, was discussed. Recently, it was proposed 
in [46] that the incremental learning should be capable of learning the new information, 
and retaining the previously acquired knowledge, while without having access to the 
previously seen data. Along with this direction, the incremental learning framework 
discussed in this article mainly focus on two important questions: how to adaptively pass 
the previously learned knowledge to the current received data to benefit learning from the 
new raw data, and how to accumulate experience and knowledge over time to support 
future decision-making processes. We consider these two characteristics are the most 
critical aspects to understand the foundation of the adaptive incremental learning, therefore 
facilitating the development of principled methodologies across different domains to 
benefit the computational intelligence community towards the long-term goal of machine 
intelligence research [36]. 

Considering the following learning scenario: Let 1jD −  represent the data chunk 

received between time 1jt −  and jt , and 1jh −  be a hypothesis developed on 1jD − . The 

important question is how should the system adaptively learn information when a new 
chunk of data, jD , is received? Conventionally, there are two categories of methods used 

to answer this question. 

Time

Dj-1 Dj

tj-1 tj tj+1

hj-1

hj

Data 
stream

hj+1

Timetj-1 tj tj+1

hj-1/Hj-1

Combination voting 

hj/Hj

Dj-1 Dj

 

(a)                                 (b) 

Fig. 1 Traditional approaches of learning from data flow 

 



 8

The first group of methods employs a simple data accumulation approach, as 
illustrated in Fig. 1(a). In these methods, one simply discards 1jh −  (denoted by the cross 

sign) and develops a new hypothesis jh  based on all the available datasets accumulated 

so far { }1, ,j jD D−… . This is a very intuitive approach. The major disadvantage of this 

approach is that it loses all previous knowledge, therefore suffering “catastrophic 
forgetting” [47]. In addition, the requirement for storage of all accumulated data sets may 
not be feasible in many real-world applications due to limited memory and computational 
resources. 

The second approach employs ensemble learning methodology as illustrated in Fig. 
1(b). Briefly speaking, whenever a new chunk of data is available, either a single new 
hypothesis, jh , or a set of new hypotheses : , 1, ,jH h j L= … , are developed based on 

the new data. Finally, a voting mechanism can be used to combine all the decisions from 
different hypotheses to reach the final prediction. The major advantage of this approach is 
that we do not require storage or access to the previously observed data. Instead, the 
knowledge has been stored in a series of hypotheses developed along the learning life. 
For example, the Learn++  method is based on this idea and adopts an 
“ensemble-of-ensembles” learning paradigm [48]. 

Although the idea as illustrated in Fig. 1(b) has been successfully applied to many 
application domains, it also has its own limitations. As each chunk of the data flow is 
considered separately during the learning stage, there is no experience accumulation and 
knowledge transformation from old data to the new data. The knowledge learned in time 

period of 1,j jt t−⎡ ⎤⎣ ⎦ , i.e., the hypothesis 1jh − , cannot be used to benefit the learning 

process in 1,j jt t +⎡ ⎤⎣ ⎦  though both hypothesis will participate the combination voting 

process. The only knowledge integration process is in the final voting stage. Therefore, 
an essential problem of incremental learning, that is to say, the accumulation of 
experience over time and its usage in facilitating future learning process, is poorly 
addressed. This work aims to address this issue. 

Motivated by the successful application of IMORL for video and image data learning 
[49], we propose the ADAIN methodology to be a general incremental learning 
framework, which can be adapted and adjusted by different motivations and 
domain-knowledge. For instance, different base learners can be embedded into the ADAIN 
framework according to different application requirements, which provides the flexibility 
of ADAIN to be a general incremental learning framework across a wide range of domains. 
The design of the mapping function in ADAIN can also be accomplished through different 
means such as nonlinear mapping functions instead of the fixed Euclidean distance 
function as used in IMORL algorithm. Furthermore, in lieu of specifying on one sort of 
specific application, such as video data analysis in [49], in this project period, we 
generalize the proposed ADAIN framework to different application domains to 
demonstrate the effectiveness of this method. 

Given the rapid development and successful application of imbalanced learning 
algorithms and incremental learning algorithms, the problem of how to incremental 
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learning from imbalanced data stream with concept drifts is shockingly ignored and attract 
relatively less attention from the community.  

Generally speaking, concept drifts occur when the target concepts of the datasets 
change over time. In such scenarios, given the fact that the data chunks with different 
timestamp -- the time record by which the data chunk is coming -- render varying target 
concepts, one naive algorithm is to simply discard all previous training examples and build 
a learning model based on only the current data chunk. Such method ignores the fact that 
there always exist some previous data chunks whose target concepts however drift not so 
far away from the current one, and including the knowledge extracted from them into the 
learning process may potentially improve the learning performance on the current data 
chunk significantly. Therefore the fundamental problem in learning concept-drifting data 
streams is how to identify in a time manner those data are no longer consistent with the 
current concepts [50]. One way to handle such problem is the sliding-windows approach 
[51] [52], which maintains a window with either fixed or adaptively determined length to 
decide how many previous hypotheses should be retained so as to reinforce the prediction 
performance of the current instances. This approach somehow confronts the 
stability-plasticity dilemma [53], since it is quite difficult to strike a balance between 
maintaining relevant information and accommodating new knowledge. One compromise 
for the sliding window is that while all the learning models built previously are retained, 
their weights to the learning process of the current data chunk can be manipulated 
differentially. Then hopefully the utmost integrity of the target concept is maintained while 
the previous feasible information is incorporated as much as possible. Dynamic weights 
(DW) updating method [50] [54] [55] generally takes this way to handle the 
concept-drifting data streams, which can be viewed as a methodology of adaptively 
updating the weights of previous generated hypothesis towards learning the data chunk 
under consideration by evaluating each of them on the current data chunk under 
consideration. Despite its success in many literature reports, one critical flaw for DW is 
that if the learning rules concluded from the most data chunks by normal approaches 
cannot fully represent the target concept within it, e.g. learning from the imbalanced 
dataset, then the weighted combination of all built hypotheses cannot significantly improve 
the learning performance on the current data chunk under consideration. 

On the imbalanced learning wise, the existing algorithms are almost all designed for 
the static imbalanced dataset. Given the intrinsic deficiency of the imbalanced dataset, 
these algorithms can only mitigate rather than overcome the impact of the with-class 
imbalance on the learning process. Then the question arises in the scenarios of stream data 
mining: how should one efficiently make use of the knowledge of previous data chunks to 
facilitate the learning from the current imbalanced data chunk?  

To this end, we propose the SERA framework to address the nonstationary imbalanced 
stream data mining problem which can be explicitly formalized as learning from data 
chunks of imbalanced class ratio, which are becoming available in an incremental manner. 
SERA selectively absorbs the minority examples from the previous data chunks into the 
current data chunk to improve the learning performance on minority examples. We argue 
and empirically prove that the minority examples whose target concept deviates from the 
current target concept are still much better than the synthetic instances for the learning 
process. We also formulate biased bagging approach (BBagging) to boost the single 
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learner's performance on the imbalanced datasets, which motivates the learner to be more 
focused on the minority examples. 

Another important topic we have investigated in this project is the network security 
issue. With the rapid development of network technology, information security has 
become a major concern for the cyber system research. For instance, for a business firm, 
sensitive and personally identifiable information in the network, such as financial 
transactions, employee records, and passwords, is potentially accessible to millions of 
Internet users, and becomes susceptible to security attacks, such as unauthorized 
disclosure, modification, misuse, destruction, and others. In the modern net-centric and 
tactical warfare networks, the situation is much more critical to provide real-time 
protection for the availability, confidentiality, and integrity of the networked information.  

Commonly used security measures, such as cryptographic systems, anti-malware 
software, and firewalls can provide effective protection for the networked computers. 
They, however, have difficulties to monitor the network traffic where majority of attacks 
take place. In order to monitor the network traffic and capture the attacks, intrusion 
detection systems (IDSs) become indispensable components in any network security 
systems. Based on the source of the input data, an intrusion detection system can be 
classified as host-based IDS, such as Haystack [78] and MIDAS [79], multi host-based 
IDS, such as NIDES [80] and CSM [81], network-based IDS, such as NSM [82] and 
SNORT [83], and hybrid/hierarchical IDS, such as EMERALD [84]. A host-based IDS is 
installed on a host computer and monitor only the activity of that particular host; A multi 
host-based IDS involves a set of hierarchical host-based IDSs running on multiple hosts 
and coordinating to detect potential intrusions; A network-based IDS is installed on a host 
computer and monitors the network activities of a particular host or a network of hosts; A 
hybrid/hierarchical IDS monitors the host, as well as the network activities and have the 
advantages of the host-based IDSs and the network-based IDSs. Based on the approach 
used for intrusion detection, an IDS can be classified as misuse-based IDS and 
anomaly-based IDS. In the misuse-based detection, also known as signature-based 
detection, the IDS detects a specific attack that has already been documented. In other 
words, the IDS maintains a database of the network activity patterns of well-known 
intrusions. The IDS continuously compares the observed network activity pattern with 
those stored in the database. Once a match is found, the IDS reports an intrusion alert. 
Although this approach hardly misses any well-known or stored attacks, it often fails to 
capture the unknown or novel attacks. Due to the growing number of new attacks, the 
misuse-based IDS shows its own limitations, because it is very difficult to update the 
database of the attack patterns instantaneously and continuously. An anomaly-based IDS, 
on the other hand, detects the critical network activity parameters and defines profiles of 
normal genuine traffic. When an observed network activity is sufficiently derived from the 
normal state defined by the system, an alert report will be triggered. Therefore, how to 
detect the outliers/anomalies from a group of observations becomes a critical issue in the 
design of the anomaly-based IDS.  

Generally, outlier detection methods can be categorized into five groups: statistical 
approaches [85], distance based approaches [86], profiling approaches [87], model-based 
approaches [88], and rule based approaches [89]. 
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Finally we present a general-purpose, multi-task, and reconfigurable platform for 
video and image processing. With the increasing requirements of processing power in 
many of today’s video and image processing applications, it is important to go beyond the 
software implementation to provide a real-time, low cost, high performance, and scalable 
hardware platform. In this paper, we propose a system by using the powerful parallel 
processing architecture in the Field Programmable Gate Array (FPGA) to achieve this 
objective. Based on the proposed system level architecture and design strategies, a 
prototype system is developed based on the Xilinx Virtex-II Pro XC2VP30 FPGA with the 
integration of embedded processor, memory control and interface technologies. Our 
system includes different functional modules, such as edge detection, zoom-in and 
zoom-out functions, which provides the flexibility of using this system as a general video 
processing platform according to different application requirements. The final system 
utilizes about 20% of logic resource, 50% of memory on chip, and has total power 
consumption around 203 mw. 

 

2. Approach taken 
In this part, we will give detailed mathematical foundations and algorithms of the proposed 
approaches for data mining. I will also present detailed analysis and discussions of the 
major characteristics of our method with comparison to the existing state-of-the-art 
research.  

2.1 RAMOBoost – A Ranked minority over-sampling in Boosting approach 
(RAMOBoost) for learning from imbalanced data set 

Motivated by SMOTE [14], SMOTEBoost [56], and ADAYN [57], we propose 
RAMOBoost, a ranked minority over-sampling technique embedded with a boosting 
procedure, to facilitate learning from imbalanced data sets. The objective of RAMOBoost 
is two-fold: to reduce the induction bias introduced from imbalanced data and to adaptively 
learning information from the data distribution. This is achieved in two respects: First, an 
adaptive weight adjustment procedure is embedded in RAMOBoost that shifts the decision 
boundary towards the difficult-to-learn examples from both the minority and majority 
classes. Second, a ranked sampling probability distribution is used to generate synthetic 
minority instances to balance the skewed distribution. The way our algorithm creating 
synthetic instances differs from SMOTE in that: in lieu of sampling minority examples 
indiscriminately and uniformly as in SMOTE, RAMOBoost evaluates the potential 
learning contribution of each minority example and determines their sampling weights 
accordingly. 

The proposed RAMOBoost algorithm for imbalanced learning from binary classes 
is formulated as follows: 

 

[Algorithm: ( )1 2RAMOBoost N,T,k ,k ] 

Input: 
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-- Training data set with m  class examples ( ) ( )1 1, , , ,m my y…x x , where ix  

( )1, ,i m= …  is an instance of the n  dimensional feature space X  and 

{ },  iy Y major minor∈ =  is the class identity label associated with instance ix  for 

majority and minority class. 

-- N : number of synthetic data to be generated at each iteration 

-- T : number of iterations, namely number of the base classifiers 

-- 1k : number of nearest neighbors in adjusting the sampling probability of the minority 

examples 

-- 2k : number of nearest neighbors used to generate the synthetic data instances 

Set ( ) { }{ }, : 1, , iB i y i m y y= ∈ ≠…  

Initialize: 

( ) 1
,iD i y

B
∈  for ( ),i y B∈ (for two class problems, B m= ) 

Do for 1, 2, ,t T= … : 

(1) Sampling the mislabeled training data with tD , get back the sampling data set eS  and 

slice it into the majority data set 1e  and the minority data set 2e , with the number of 

examples as ltm  and stm , respectively. 

(2) For each example 2i e∈x , find its 1k  nearest neighbors in the data set eS  according 

to the Euclidean distance in n  dimensional space and calculate ir  defined as: 

( )
1

,   1, 2,
1 expi st

i

r i m
α δ

= =
+ − ⋅

…                         (1) 

Where α  is a coefficient and iδ  is the number of majority cases in 1k  examples. 

(3) Normalize ir  according to: 

1

ˆ
st

i
i m

ii

rr
r

=

=
∑

                                       (2) 

Such that { }ˆ ir  is a distribution function: 
1

ˆ 1stm
ii

r
=

=∑ . Define { }ˆt id r= . 

(4) Sample 2e  with td , get back a sampling minority data set tg , where there are stm  

data inside. 

(5) For each example i tg∈x , find its 2k  nearest neighbors in 2e  according to the 

Euclidean distance in n  dimensional space, and use linear interpolation to generate N  
synthetic data. 
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(6) Provide the base classifier with sampling data set eS  along with the N  synthetic data. 

(7) Get back a hypothesis th : [ ]0,  1Y× →X . 

(8) Calculate the pseudo-loss of th : 

( ) ( ) ( )( )
( ),

1
, 1 , ,

2t t t i i t i
i y B

D i y h y h yε
∈

= − +∑ x x                 (3) 

(9) Set 
1

t
t

t

εβ
ε

=
−

. 

(10) Update tD : 

( ) ( ) ( ) ( )( )1 , ,

1

,
, t i i t ih y h yt

t t
t

D i y
D i y

Z
β + −

+ = x x
                     (4) 

Where tZ  is a normalization constant. 

End Loop 

 

Output: The output hypothesis ( )finalh x  is calculated as follows: 

( ) ( )
1

1
arg max log ,

T

final ty Y i t

h h y
β∈

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑x x                                    (5) 

 

According to this description, the RAMOBoost algorithm includes two 
mechanisms to facilitate learning from imbalanced data. The first consists of steps (2) to 
(5), where instances are adaptively generated according to their distributions. In this way, 
more synthetic instances are created for difficult-to-learn minority examples that are more 
likely to be misclassified compared to easy-to-learn minority examples. This is 
significantly different from the SMOTE algorithm where each minority example has equal 
weight and therefore the same number of synthetic instances are created for each minority 
example. The second mechanism: steps (6) to (10) use the pseudo-loss of the current 
hypothesis th  to update the sampling distribution tD , which is employed to sample the 

training data set in the next iteration as shown in step (1). Similar to the AdaBoost.M2 
algorithm [58] [59], the pseudo-loss mechanism can adaptively shift the final hypothesis 
towards the decision boundary to facilitate the learning process. 

Similar to RAMOBoost, our previous work ADASYN [57] also aims to 
systematically generate synthetic minority instances according to the data distribution 
instead of using a uniform distribution. However, ADASYN does this in an aggressive 
manner: almost all of the generate synthetic minority instances are very close to the 
decision boundary. In contrast, RAMOBoost employs a parameter-specified logistic 
function to map the number of majority cases within the k  nearest neighbors of a minority 
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examples under consideration to real number in the range [0, 1] to determine the sampling 
probability of each minority example. In this way, RAMOBoost considers all minority 
examples for synthetic generation, albeit at varied level. 

In order to compare and visualize the data generation mechanism of RAMOBoost 
with that of SMOTE and ADASYN, we provide a case study of a data set with 2000 
majority examples and 100 minority examples, the result of which is shown in Fig. 2. Fig. 
2(a) shows the original imbalanced data distribution, and Fig. 2(b), 2(c), and 2(d) show the 
post-SMOTE data distribution, the post-ADASYN data distribution, and the 
post-RAMOBoost data distribution, respectively. In all these figures, the x-mark, plus, and 
point shapes represent the original majority data, original minority data, and the generated 
synthetic data, respectively. In this case study, CART (Classification and Regression Tree) 
is used as classifier. The confusion matrix (in terms of instant counts) is used for 
performance assessment for different algorithms. Followed by the suggestions of [2] [14] 
[60], the minority class and the majority class are used as positive class and negative class, 
respectively. From Fig. 2, one can figure that the data generation process of RAMOBoost 
is more adaptive and systematic according to the data distribution. And RAMOBoost is 
credited accordingly with better performance than other algorithms for comparison (by 
confusion matrix). 

 

(a)                                 (b) 

 

(c)                                (d) 
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Fig. 2. Comparison of different synthetic data generation mechanisms. (a) The original 
imbalanced data distribution (2000 majority examples and 100 minority examples). (b) 
The data distribution after SMOTE method. (c) The data distribution after ADASYN 
method. (d) The data distribution after RAMOBoost method. 

 

2.2 ADAIN – An adaptive incremental learning framework (ADAIN) for learning 
from the data flow 

Motivated by the adaptive boosting principle and ensemble learning methodology [58] 
[59] we propose the ADAIN framework to enable knowledge accumulation and 
transformation to benefit learning from continuous data flow. Unlike traditional learning 
approaches, the objectives here are two-fold: 1) integrate previously learned knowledge 
with currently received data to improve learning from the new raw data, and 2) accumulate 
experience over time to support future decision-making processes. 

Assume a learner is presented with a data flow over time. At time t , a new set of 
training data tD  is received. The previous knowledge in this case includes the hypothesis 

1th − , which was developed at time 1t −  from the distribution function 1tP−  applied to the 

data set 1tD − . Here the distribution function can be either a sampling probability function 

or weight distribution function for different instances in the data. Difficult examples that 
are hard to learn will carry higher weights compared to those examples that are easy to 
learn [58]. For the first chunk of the received data, if there is no a priori knowledge about 
the data distribution, the initial distribution function 1P  can be uniform because nothing 

has been learned yet. Otherwise, 1P  can be set according to any given prior knowledge. 

The proposed system level framework is illustrated in Fig. 3, followed by a detailed 
learning algorithm. 

 

 

Fig. 3 Adaptive incremental learning for classification 

 



 16

[The ADAIN Framework] 

 

Previous knowledge at time ( )1t − : 

-- Data set, 1tD − , with m  instances: { },i iyx , ( )1, ,i m= … , where ix  is an instance in 

the n  dimensional feature space X  and { }1, 2,iy Y c∈ = …  is the class identity label 

associated with ix . 

-- Distribution function: 1tP− . 

-- A hypothesis, 1th − , developed by the data based on 1tD −  with 1tP− . 

 

Current input at time t : 

-- A new data set, tD , with m′  instances, where m′  may or may not be the same size as 

m , and can be represented as { },j jyx , ( )1, ,j m′= … . 

 

Learning procedure: 

(1) Define a mapping function, ϕ , and estimate the initial distribution function ˆ
tP  for 

tD : 

( )1 1
ˆ , ,t t t tP D P Dϕ − −=                                                      (6) 

(2) Apply hypothesis 1th −  to tD , calculate the error of 1th − . 

( )
( )1:

ˆ

t j j

t t
j h y

P jε
− ≠

= ∑
x

                                                      (7) 

(3) Refine the distribution function for tD : 

( )1
ˆ         if 

1,                 otherwise

t t j jt
t

t

h yPP
Z

ε −
⎧ =⎪= ×⎨
⎪⎩

x
                                          (8) 

where tZ  is a normalization constant so that tP  is a distribution  

(4) Repeat the procedure when the next chunk of new data set 1tD +  is received. 

 

Output: The final hypothesis 

( )
( ):

1
arg max log

T

final y Y T h y T

h
ε∈

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑

x
x                                         (9) 
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where T  is the set of incrementally developed hypothesis in the learning life. 

 

Fig. 3 visualizes the architecture of the learning process, which includes three 
layers and three signal flow directions for information exchange, experience accumulation, 
and knowledge integration. Layer 1 is the continuous stream raw data, Layer 2 is used to 
transform the raw data into knowledge representation based on the accumulation of 
previous experience (through a dynamic learning process to effectively adjust the 
distribution function from existing knowledge), and Layer 3 then develops multiple 
hypotheses by effective weight adjustments, which serves as the knowledge integration 
platform from multiple hypotheses. 

The bottom-up flow transforms the original data tD  to information and knowledge 

representation: tP  and th . Based on tP , a learning hypothesis th  is developed, in which 

the decision boundary is automatically forced to be more focused on the difficult regions. 
After tP  and th  have been obtained, the system uses its knowledge to facilitate learning 

from the next chunk of raw data, 1tD + . This is achieved by the top-down and horizontal 

signal flow, as illustrated in Fig. 4. The objective here is to inherit the adaptive boosting 
characteristic to improve incremental learning. 

There are two mechanisms in ADAIN framework to facilitate the adaptive 
incremental learning capability. First, a mapping function ϕ  (equation (6)) is used to find 

the data distribution relationship between tD  and 1tD − . The definition of ϕ  can be 

user-specified in accordance with the requirements of specific applications. The objective 
of the ϕ  function is to provide a quantitative representation of the relationship between 

different data distributions. Second, an initial estimation of tP , denoted as t̂P , is made 

from knowledge contained in the hypothesis, 1th − , applied to the new chunk of data tD . 

The error measurement is calculated in equation (7), which represents the 
goodness-of-learning when the previous knowledge 1th −  is applied to the new data. This in 

turn is used to refine the distribution function in equation (8). In this way, misclassified 
instances (difficult examples) will receive higher weights, and the learning algorithm will 
adaptively push the decision boundary to focus on those hard-to-learn instances. 
Furthermore, since the hypothesis developed at the previous time step is used to evaluate 
its performance over the current data chunk, ADAIN implicitly takes into consideration all 
previous domain datasets for the current hypothesis, as illustrated by the dashed-arrow in 
Fig. 3. 

We also want to point out that the proposed incremental learning framework is a 
general learning methodology. Therefore, different base learning algorithms, such as 
decision trees, neural networks, support vector machines, and others, can be embedded into 
this framework for incremental learning. 

In the proposed learning framework, the mapping function ϕ  (equation (6)) 
provides connections from past experience to the newly received data, and adapts such 
knowledge to future data chunks. Different design strategies of the ϕ  function can be 
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used. For instance, Euclidean distance function can be employed as the mapping function 
to find the relationship between data 1tD −  and tD  to estimate the initial distribution tP  

as illustrated in Fig. 4 [49].  

Time

tP̂

See equations (5) ~ (9)

index
1
2

1
2

index1tD − 1tP− tD

m m′

jI

jQ

i j

 

Fig. 4 Mapping function based on Euclidean distance 

 

The fundamental mechanism is summarized as follows: 

(1) a distance map ( )DM  function between 1tD −  and tD  is calculated: 

( )
2

1

,  1, ,
n

ji jk ik
k

k m
=

= − =∑ …DM x x                     (10) 

{ }
( )

1, ,
arg minj jii m

I
∈

=
…

DM                             (11) 

( )minj jiQ = DM                               (12) 

Where { }1, ,jI m⎡ ⎤= ∈⎣ ⎦ …I  is the index of the nearest neighbor in 1tD −  for each data 

instance of the nearest neighbor in tD , and [ )0,jQ⎡ ⎤= ∈ ∞⎣ ⎦Q  is the corresponding 

distance value. 

(2) After the distance ( ) 1, ,jQ j m= …  is determined, it is scaled according to: 

( )( )
1

exp 1 exps = − −
Q

Q
                           (13) 

where 
1

,  1s e
⎛ ⎤∈⎜ ⎥⎝ ⎦

Q . 

(3) With sQ , the initial estimation of the distribution function is updated: 
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( )1ˆ t s
t

t

P
P

Z
− ×

=
′

I Q
                                 (14) 

where tZ ′  is a normalization constant so that t̂P  is a distribution. 

 

From equations (10) to (14), one can see that the key idea of using Euclidean distance 
mapping function is to provide a mechanism to pass previous knowledge to the new data 
analysis to facilitate incremental learning. When the boosting idea is applied to traditional 
static learning problem [58] [59], the weights can be updated iteratively based on the static 
training data in a sequential format. However, in the incremental learning scenarios, one 
can not directly obtain/update such weights when a new chunk of the data flow is received. 
Equations (10) to (14) provide such a connection (equivalent to the mapping function ϕ  
the pseudo code). 

 

tP̂

tP̂

 

Fig. 5 Mapping function based on MLP 

 

In this work, we propose that the nonlinear regression models can also be utilized 
as the mapping function of the proposed incremental learning framework. For instance, the 
multi-layer perceptron artificial neural network with backpropagation, which is 
abbreviated as “MLP” in the remaining parts of this article, can also be integrated into the 
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framework to implement the mapping function ϕ ; its idea is shown in Fig. 5. Based on the 

previous data information, 1tD − , and its associated distribution function, 1tP− , one can 

develop an MLP model to learn the relationships between the feature space and its 
corresponding numerical weight function, 1tP− . Then, when the new chunk of data, 1tD − , 

is received, one can use the trained MLP to obtain the initial estimation of the distribution 

function: t̂P  (equation (16)). Once the MLP output is predicted, one can normalize them 

to be a distribution function (summation equals to 1). We would also like to point out that 
technically speaking, other types of the regression models, such as SVMs and CART, can 
also be integrated into the proposed learning framework to accomplish the incremental 
learning capability, which provides the flexibility of using the ADAIN as a general 
incremental learning framework across a large variety of application domains. 

 

2.3 SERA – A Selectively Recursive Approach towards nonstationary imbalanced 
data classification 
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Fig. 6 The SERA framework 

 

The SERA framework [115] is depicted in Fig. 6. And the pseudo-code of the proposed 
SERA algorithm for nonstationary imbalanced stream data mining is formulated as 
follows: 

 

[The SERA Algorithm] 
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Input: 

-- The imbalanced ratio r  specifying the proportions between the minority examples and 
majority examples in the training data chunk. 

-- Current training data chunk kS  with m  training examples ( ) ( )1 1, , ,m my y…x x , 

where k  is the timestamp of the current data chunk, ix  is an instance of the n  

dimensional feature space X  and { },iy Y major minor∈ =  is the class identity label 

associated with the instance ix . 

-- Current testing data chunk kT  

-- The data set 1kC −  preserving all the minority examples ( ){ },i iy′x  within the training 

data chunk prior to the current timestamp k . 

-- The post-balance ratio f  specifying the class ratio after balancing the current training 

data chunk by selectively incorporating the minority examples into 1kC − . 

Algorithms: 

(1) Split kS  into kP  and kN , where kP  denotes the minority example set and kN  

denotes the majority example set. 

(2) If ( )1f k r> − × , then include all minority examples of 1kC −  into the current training 

data chunk kS  for learning, i.e., { }1,k k kS S C −′ = . 

(3) Else 

(3.1) Calculate the Mahalanobis distance id  between kP  and each minority instance 

i′x  of 1kC − . 

(3.2) Sort { }id  in ascending order, then pick out minority examples of 1kC −  with 

respect to the first ( )f r m− ×  terms in the sorted { }id  and associate them as the set 

kM . 

(3.3) Accommodate kM  into the current training data chunk kS , i.e., { },k k kS S M′ = . 

(4) Build the learning model based on kS′ , where ramifications exist as: 

(4.1) Simply establish a single scoring hypothesis kh  based on kS ′ . 

(4.2) Otherwise: call BBagging function to establish the ensemble hypotheses 

{ }1 , , T
k kh h… , where T  specifies the number of iterations for BBagging. 

 

Output: 
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-- If the single hypothesis establishment is adopted: Apply kh  on kT , and get back the 

decision output kΦ . 

-- If the BBagging approach is adopted: Apply { }1 , , T
k kh h…  on kT , and get back a decision 

output vector: { }1 , , T
k kΦ Φ… . Then: 

1

1 T
i

k k
iT =

Φ = Φ∑                                 (15) 

 

[The BBagging Algorithm] 

 

Input: 

-- The training example set { },D P N=  with the size m , where P  is the minority 

example set with the index set PI  in D , and N  is the majority example set with the 

index set NI  in D . 

-- The number of iterations T . 

-- The cost factor k . 

 

Initialize: 

-- Sampling probability mass function ( )PI kΨ =  and ( ) 1NIΨ = / 

Algorithm: 

Do for 1, 2,t T= …  

(1) Sampling D , and get back a sampled data set tE . 

(2) Provide the base classifier with tE . 

(3) Get back a hypothesis [ ]0,1th →  

End Do 

 

Output: 

The Ensemble scoring hypotheses: { }, ,k kh h…  

 

Rather than adopting either of the sliding window or dynamic weights updating 
methods to handle imbalanced data streams with concept drifts, our proposed approach 
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consistently collects the minority examples ( ){ },i iy′x  from the training data chunks prior 

to the present timestamp $k$, and associates them together as 1kC − . Instead of feeding the 

entire 1kC −  into the current training training data chunk kS  to facilitate the learning 

process [61], our approach will apply the post-balance ratio f  to proportionally 

accommodate 1kC −  by somehow measuring the similarity between each of them and the 

current minority set kP . The Mahalanobis distance [62] is employed for measuring such 

similarity. 

Mahalanobis distance is part of the exponential term of the multi-dimensional 
Gaussian density function. It is considered generally more effective than Euclidean 
distance in determining the similarities among variables. Formally, Mahalanobis distance 

Ω  from a set of n -variate instances with mean value [ ]1,
T

nμ μ= …μ  and covariance 

matrix Σ  to an arbitrary instance [ ]1,
T

nx x= …x  is defined as [62]: 

( ) ( )Tx xμ μΩ = − Σ −                               (16) 

Then those that are close to the set of present minority examples in Mahalanobis distance 
will be granted priority to be added into kS . The balanced data set kS ′  is thus obtained. 

Towards learning from kS′ , we either directly build a hypothesis upon it or adopt 

BBagging to build an ensemble. Rather than maintaining a consistently uniform sampling 
function as done by Bagging [63], BBagging manually makes the sampling weights of 
minority examples greater than the majority examples by a proportional cost factor k . 
Apparently, BBagging will be reduced into the normal Bagging if the cost factor k  is 
equal to 1. 

SERA does not take either of the sliding windows or dynamic weights updating 
methods. The reason of this is based on the following two concerns: 

 

Question 1: 

Is the similarity of the target concept between the two data chunks solely or largely 
dependent on the difference of their timestamps? 

Question 2: 

Can the hypotheses plainly built upon the previous imbalanced data chunks 
significantly help the learning process of the data chunk under consideration? 

 

In reference [64], the density function for the target concept of the KDD cup 1999 
network intrusion dataset [65] in the timeframe of five weeks is plotted. The density curve 
keeps fluctuating all the time along the timeline and does not present any non-subtle 
patterns. Such observation on real-world dataset greatly undermines the foundation of 
sliding window approach: since the window length only concerns how far away the 
learning process for the current data should seek help from, it implicitly assumes that the 
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more adjacent in timestamp the model was learned, the more relevant it is to the current 
data chunk under consideration. Even if the gradual changes exist in the real-world 
applications, it cannot be possibly known beforehand the concept drifts of the data stream 
under consideration belong to what category. Furthermore, the data stream exhibiting 
gradual concept drifts at the beginning may dive into an unpredictably sudden change 
pattern in the future. By taking all these concerns into consideration, the DW method may 
not be a brilliant choice for dealing with nonstationary data streams. 

The answer to the 2nd question is also largely negative. Since the minority examples 
are severely overwhelmed by the majority examples, the information regarding the 
minority examples from the previously built hypothesis on the data chunk under 
consideration is skinny, even if the overall accuracy is high. For instance, by predicting all 
the instances of a dataset with the minority class ratio being 0.01 to belong to the majority 
class, the classifier undoubtedly performs terribly on the minority instances even if its 
overall accuracy can reach to 0.99. To this end, including all previously built hypotheses 
into the current learning process can only make limited contribution to accurately predicate 
the minority instances. 

There are studies showing that some classifiers can perform much better on 
post-balanced dataset than imbalanced dataset [11] [66]. We indeed take over this idea to 
handle the imbalanced learning problem by making the training data chunk more balanced. 
Although there are versatile definitions across various communities for over-sampling 
technique, we explicitly define it in the scenario of imbalanced learning as replicating the 
selected examples and adding them into the original dataset to augment its volume [67], 
which is widely applied in imbalanced learning research [14] [57]. The reason we opt out 
the over-sampling technique to balance the dataset is that: First, Solely depending on 
synthetic instances to balance the current imbalanced training data chunk tears apart the 
connection to all previous knowledge and thus results in the “catastrophic forgetting” [53]. 
Second, The over-sampling technique is somehow related to the discriminative algorithm 
which is more focused on learning the decision boundary, i.e., ( )|p y x . The data 

distribution of the synthetic minority instances, i.e., ( )|p x y , is therefore more likely to be 

severely deflected from the target concept of the original data chunk than the previous 
minority examples with not that severe drifting concepts. 

Given that the accommodation of previous minority examples can help facilitate 
the learning on imbalanced dataset, is it better to include all previous minority examples 
into the current data chunk for learning, or we should constrict the scale of the inclusion at 
a certain level? As aforementioned, we believe only the minority examples with not that 
drifting-away target concepts are actually helpful for the learning process. And it is why we 
introduce the Mahalanobis distance to measure the severe degree of concept drifts for 
minority examples. Besides, since the minority examples becoming available previously 
and currently after all do not share the same distribution, it is better to limit the number of 
accommodated minority examples to keep them from non-trivially undermining the target 
concepts of the current data chunk. 

The proposed BBagging is assumed to improve the prediction accuracy of the 
minority instances by introducing the cost factor k . Higher k  brings more minority 
examples in the sampling dataset. However an excessively high cost factor may also 
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severely deteriorate the prediction performance on the majority instances. How to balance 
the performance on minority examples and the performance on the entire dataset is 
something one should carefully think about. One more comment to the learning model 
building as the 3rd step in the pseudo-code of SERA is that we do not claim the proposed 
BBagging is definitely better than a single classifier on an imbalanced data chunk. 

2.4 Network Intrusion Detection Based on KDE and SOM 

In this project, we have investigated of the use of the anomaly-based IDSs that are 
described mathematically by a group of random variables or a random vector 

{ }nvvvV ,...,, 21= , with all components iv ’s scalar-valued random variables on the same 
probability space. We use kernel density estimation technique to estimate the probability 
density function (pdf) for the observed random variables without any underlying 
distributions specified a priori. Based on the preset confidence level, the two-side cutting 
limits are searched heuristically and iteratively. Due to the huge volume of data and the 
inherent characteristic of KDE method, it is very difficult to perform online intrusion 
detection and provide real-time protection because of the heavy computational load. In 
order to reduce the computational complexity of KDE, several methodologies have been 
proposed in literature. For instance, in [106], a reduced kernel density estimation algorithm 
that combines KDE with SOM is proposed and some theoretical results on binned kernel 
density estimation are also presented. In [107], self-organizing mixture networks are 
proposed for probability density estimation, and applications of this model over density 
profile estimation and pattern classification are presented to illustrate the effectiveness and 
efficiency of the proposed method. Fast Gauss transform technique is used in [108] to 
speed up the kernel density estimation and this algorithm is applied to vision tracking 
problems. We take advantage of the learning and clustering capabilities of SOM and 
employ SOM to preprocess the input data. The principle of learning in SOM is to 
self-organize the network of neurons to seek similar properties for certain input patterns. 
Therefore, SOM can form an approximation of the distribution of input space in a compact 
fashion. Using only the trained SOM neurons, instead of all the input vectors, as kernels to 
calculate pdf can significantly reduce the number of terms in a kernel density estimator, 
and thus greatly improve the efficiency and performance for the intrusion detection.  

2.4.1 Definition of Outliers 
Generally, an outlier is defined as an observation that lies outside the overall pattern of a 
distribution [90]. In a sense, the principles used to decide what will be considered abnormal 
are largely determined by the analysts or application settings.  

In this project, we consider the univariate problems, and assume that there is only one 
cluster in the observed data. In other words, the outliers all lie in either the left or the right 
side of the cluster. We also assume an underlying distribution for the observed data. Then 
the outliers are defined as any sample outX  that lies in the outlier region ( )βα ,Θ  defined 
as  

 

( ) ( ) ( )βαβα lowerupper Θ∪Θ=Θ , ,                           (17) 

where: 
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( ) ( ) ( )
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⎪
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γ

dxxfXPXXlower
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γλ,  are the upper and the lower cutting interval limits, respectively, which are determined 
by βα ,  that are the upper and the lower cutting probabilities dependent on specific 

problems or IDS systems. f̂  is the estimate of the underlying pdf for the given observed 
data. We call ( )αupperΘ  the upper outlier region and ( )βlowerΘ  the lower outlier region. 

Fig. 7 demonstrates three cases of the outlier regions. In Fig. 7 (a) and (b), we only consider 
one-side tail outlier, i.e., 0=β  or 0=α , whereas in Fig. 7 (c), we consider two-side tail 
outliers. 
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( )xf̂
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γ

( )xf̂

x
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λ
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Fig. 7 Definition of outliers and outlier regions 

 

2.4.2 Kernel Density Estimation (KDE) 
Density estimation is defined as the construction of an estimate of the density function 
from the observed data. Various density estimation methods are summarized in [91]. 
Generally, there are two classes of density estimation methods, parametric and 
non-parametric. Parametric density estimation is conducted under the assumption that 
the data are drawn from a known parametric type of distribution, such as Gaussian 
distribution or uniform distribution, whereas nonparametric estimation has no such 
assumption. In this project, since the observed random variables of network activities 
are all with unknown pdfs, we adopt kernel density estimation method that is a 
non-parametric algorithm to estimate the underlying pdfs of the observed data.  

Given a sample of N  observations NXXX …,, 21 , the kernel estimator can be 

obtained by 

( ) ( )∑
=

−=
N

i
ihh XxK

N
xf

1

1ˆ                          (18) 
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where ( ) ( )hK
h

Kh /
1

⋅=⋅ , ( )⋅K  is the kernel function. Usually, K  is a symmetric 

probability density function that satisfies 

( )∫
∞

∞−
=1dxxK                                (19) 

There are various choices among kernels as shown in Table 1. In this project, we adopt 
the popular Gaussian kernel for analysis. 

 

Table 1 Kernel functions 

Kernel ( )xK  

Uniform ( ) ( )11
2

1
≤= xxK  

Triangle ( ) ( ) ( )111 ≤−= xxxK  

Epanechnikov ( ) ( ) ( )1
2 11

4

3
≤−= xxxK  

Quartic ( ) ( ) ( )1
22 11

16

15
≤−= xxxK  

Triweight ( ) ( ) ( )1
32 11

32

35
≤−= xxxK  

Gaussian ( ) ⎟
⎠
⎞

⎜
⎝
⎛−= 2

2

1
exp

2

1 xxK
π

 

Cosinus ( ) ( )11
2

cos
4 ≤⎟

⎠
⎞

⎜
⎝
⎛= xxxK ππ

 

 

 

In the kernel density estimation, the bandwidth h  is an important parameter. Too 
large h  will lead to over-smoothing while too small h  will result in an under-smoothed 
estimate. Therefore, h  has to be chosen carefully. There are several ways to calculate h . 
These methods include the likelihood cross-validation method [92], the least-squares 
cross-validation method [93], the biased validation method [94], and the plug-in methods 
[95] [96]. Some empirical studies [97] show that most methods can work equally well. 
Interesting readers can refer to [98] [99] for more detailed information. In this article, we 
calculate the window width as [100] [91]  

5/1ˆ06.1 −= Nh σ                                 (20) 

where σ̂  is the standard deviation of the sample X  and N  is the size of X . We note 
that the better estimation results may be obtained using a robust measure of spread or 
further improved by considering a skewness factor if the data show heavy skewness. 
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Interested reader may refer to [91] for further details. 

2.4.3 Self-organizing Map (SOM) 
Self-organizing map is a power learning model based on competitive learning and 
unsupervised learning [101] [102] [103]. The principle goal of SOM is to project the input 
vector with high dimension into low dimensional (normally less than three dimensions) 
discrete map in topologically ordered pattern. Therefore, SOM can be used for 
visualization, dimension reduction, vector quantization, and clustering.  

Generally, SOM consists of a group of neurons that are organized as a low 
dimensional grid, usually a 2-D grid. Consider that all the input data are n -dimensional 

feature vectors, [ ] nT
inii xxX ℜ∈= …,1 . Then, each neuron is associated with an 

n -dimensional feature vector or weight, [ ]inii ωωω ,,1 …= . These weights associated to the 
neurons are adjusted according to the input patterns. In the training phase, three learning 
processes are involved, including competition, cooperation, and synaptic adaptation [104].  

During the competition stage, at each training step t , an input vector ( )tX  is 
randomly sampled from the input space. Euclidean distances between the input vector and 
each neuron are calculated, and the winning neuron is the neuron ( )tnwin  with the smallest 
distance (maximum similarity) to the input vector 

 

( ) ( ) i
i

win tXtn ω−= minarg , A…,,2,1=i                         (21) 

 

where A  is the total number of neurons in the SOM. 

In the cooperation phase, a topological neighborhood around the winning neuron has 
to be determined. In order to guarantee the neurobiological correctness, the choice of the 
neighborhood should satisfy two conditions: (1) the topological neighborhood should be 
symmetric around the winning neuron that has the maximum value; (2) the rate of learning 
in the topological neighborhood decreases monotonically with increasing lateral distance 
between the synaptic neuron and the winning neuron. A common selection of the 
topological neighborhood is Gaussian function ( )th

iwin nn ,  defined as 

( )
( ) ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−=

t

d
th iwin

iwin
nn

nn 2

2
,

,
2

exp
σ

, A…,,2,1=i                     (22) 

where ( )
22

, iXnnn rrd
tiwin
−=  is the lateral distance between ( )tnwin  and in , A…,,2,1=i , 

and ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

1
0 exp

τ
σσ tt , …,2,1,0=t , is the effective width of the topological 

neighborhood. 
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Finally, in the synaptic adaptation stage, the weight of the winning neuron, as well as 
those of the excited neurons, is adjusted to the input pattern ( )tX  based on the topological 
neighborhood function (22). The weight- updating rule of SOM can be written as 

 

  ( ) ( ) ( ) ( ) ( ) ( )( )ttXthttt innii iwin
ωηωω −+=+ ,1                         (23) 

where ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2
0 exp

τ
ηη tt  is the monotonically decreasing learning rate. 

2.4.4 Network Intrusion detection Algorithm 
For our network intrusion detection method, we take the advantages of both SOM and 
KDE [116]. In this algorithm, we use KDE to estimate the underlying density function and 
search the cutting limits iteratively and heuristically. However, due to the huge amount of 
data collected from the network, it is very difficult to perform this task online because of 
the heavy computational load. Therefore, SOM is first employed to preprocess the input 
data and this operation can dramatically reduce the number of kernels that are used to 
calculate the pdfs while still being able to match its estimation accuracy. Specifically, since 
we obtained A  neurons using SOM trained from the input set, we can use these neurons as 
kernels to calculate the pdf instead of using all the input vectors as we did in equation (18), 
which will dramatically reduce the number of kernels used to calculate the pdf and reduce 
the computational load of KDE. We can rewrite equation (18) as  

 

( ) ( )∑
=

−=
A

1

ˆ

i
ihih nxKxf ε                                  (24) 

where 
N
Ni

i =ε , iN  is the number of input samples in the Voronoi region of the reference 

neuron in . Fig. 8 demonstrates an example of using the traditional KDE and the KDE 

based on SOM. Fig. 8 (a) shows the mechanism of the traditional KDE in which all data 

iX , 18,,2,1 …=i , are directly used to estimate the pdf at eX  as 

( ) ( )∑
=

−=
18

118

1ˆ
i

ieheh XXKXf , while Fig. 8 (b) shows the idea of the KDE based on SOM in 

which only the trained SOM neurons ,in  3,2,1=i  directly contribute to the calculation of 

the pdf at eX  as ( ) ( )∑
=

−⋅=
3

1

ˆ
i

iehieh nXKXf ε .  
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Y

( )( )3/1,, 1111 == εnynxn

X

Y
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( ),, iii yxX = 18,,2,1 …=i

 

Fig. 8 (a) The traditional KDE and (b) the KDE Based on SOM 

 

In this project, we consider one-dimensional input data, and thus the SOM is constructed as 
a one-dimensional grid. We use the trapezoidal rule to approximate the integral of the pdf. 
The proposed algorithm is summarized as follows. 

 

[Algorithm: Network Intrusion Detection Algorithm]: 

 

Input:  

 

 A group of observations of the network activities. { }kXX = , ℜ∈kX , Nk ,,2,1 …= ; 
 Integer T  specifying the number of iterations for training the SOM; 
 Nonnegative numbers +ℜ∈βα ,  specifying the upper and the lower cutting 

probabilities, respectively; 
 Positive number ++ℜ∈ξ  specifying the interval used for searching the cutting limits. 

 

Procedure:  

 

1. Initialize a 1-d SOM as { }in , A…,,2,1=i , where A  is the total number of neurons in 

the SOM, and the weights iω  associated with the neurons are initialized with values 

randomly sampled from the interval [ ]1.0,1.0− . 
2. Train the SOM. Do for Tt ,,2,1 …=  

a) Randomly pick a sample tX  from X . 
b) Search the best-matching neuron (winning neuron) ( )tnwin  using equation (21). 
c) Update the synaptic weight vectors of all neurons using equations (22) and (23). 

3. Search the upper cutting limit λ . Start from an arbitrary large value ∞+= X0ϕ . 

Estimate the pdf values ( ){ } …,2,1,0
ˆ

=iif ϕ  at a sequence of points { } …,2,1,0=iiϕ  with 
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interval ξ− as ξϕϕ −=−+ kk 1  using equation (24), and search uϕλ =′  such that 

( ) ( )( ) αξϕϕ ≥⋅+= ∑
=

+

u

k
kkupper ffP

0
12

1 ��
. Return ( )( )Xmax,min λλ ′= . 

4. Search the lower cutting limit μ . Start from an arbitrary small value ∞−=′ X0ϕ . 

Estimate the pdf values ( ){ } …,2,1,0
ˆ

=′ iif ϕ  at a sequence of points { } …,2,1,0=′ iiϕ  with 

interval ξ  as ξϕϕ =′−′+ kk 1  using equation (24), and search lϕμ ′=′  such that 

( ) ( )( ) βξϕϕ ≥⋅′+′= ∑
=

+

l

k
kklower ffP

0
12

1 ��
. Return ( )( )Xmin,max μμ ′= . 

 

Output: 

 

 Return λ  and μ  that are the upper and the lower cutting limits, respectively. 

 Report all the samples outlierX  that lie in the outlier region (defined in equation (17)), 

i.e., λ≥outlierX  or μ≤outlierX , as network intrusions, or network intrusion 

candidates for further analysis.  
 

 

3. Results 
In this section, we will demonstrate the applications of the proposed algorithms and models 
to various data mining applications. To provide a comprehensive assessment of the 
proposed approaches, we have investigated public available data sets and artificially 
synthetic data sets during this project period. 

 

3.1 RAMOBoost – A Ranked minority over-sampling in Boosting approach 
(RAMOBoost) for learning from imbalanced data set 

In order to gain a thorough insight in the competitiveness of the proposed RAMOBoost, we 
conduct various simulations of RAMOBoost and compare its performance with 
SMOTEBoost, SMOTE, ADASYN, AdaCost, BorderlineSMOTE, and SMOTE-tomek 
across different real-world data sets. In our current study, neural network with multi-layer 
perceptron (MLP) is employed as the base learner. The detailed configuration is as follows: 
The number of hidden layer neurons is set to be 4, and the number of input neurons is equal 
to the number of features for each data set. Similar to most of the existing imbalanced 
learning methods in literature, we also only consider two-class imbalanced problems in our 
current study. Therefore, the number of output neuron is set to be 2 for all the simulations. 
Sigmoid function is used as the activation function, and the inner training epochs is set to 
be 100 with a learning rate of 0.1. 

Due to the concern that the scattered feature distribution of some data sets may 
hinder the neural network from converging enough fast for the parameter acceleration 
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process, before all data sets are presented to the comparative algorithms for learning, we 
employ the nonlinear normalization approach [85] to normalize the features of the data sets 
to reside in the interval [0, 1] first. 

The performance of RAMOBoost is evaluated on 16 data sets from UCI machine 
learning repository [65] and ELENA project [68]. These data sets are varied in their sizes 
and class distributions to ensure a thorough assessment of the performance of 
RAMOBoost. Table 2 summarizes the characteristics of the data sets used in our 
simulation. 

 

Table 2 Summary of the data sets characteristics (Sorted by imbalanced ratio)  

Dataset 
# 

feature 

# 

data 

# 

majority instances 

# 

minority instances 

Imbalanced 

Ratio 

Sonar 60 208 97 111 0.47:0.53 

Spambase 57 4601 1813 2788 0.39:0.61 

Ionosphere 34 351 126 225 0.36:0.64 

Pima-Indians-Diabetes 8 768 268 500 0.35:0.65 

Wine 13 178 59 119 0.33:0.67 

German 24 1000 300 700 0.30:0.70 

Phoneme 5 5404 1586 3818 0.29:0.71 

Vehicle 18 846 199 647 0.24:0.76 

Texture 40 5500 1000 4500 0.18:0.82 

Segment 18 2310 330 1980 0.14:0.86 

Page_Blocks 10 5473 560 4913 0.10:0.90 

Satimage 36 6435 626 5809 0.10:0.90 

Vowel 10 990 90 900 0.09:0.91 

Abalone 7 731 42 689 0.06:0.94 

Glass 9 214 9 205 0.04:0.96 

Yeast 8 483 20 463 0.04:0.96 

 

Under the imbalanced learning scenario, the conventional assessment method of 
using a single criterion, such as overall accuracy, may not be able to provide a 
comprehensive assessment of the learning algorithm [16] [56] [60] [69] [70] [71] [72]. 
Considering a simple case of a given data set with 2% minority class examples and 98% 
majority class examples, a naive approach of classifying every example to be the majority 
class can at best provide an overall accuracy of 98% over the entire data set. However, in 
many real-world applications such as biomedical data analysis, such a classification 
performance would be unacceptable as it misclassifies all the minority cases, which 
generally are more important in such situations. As a result, the overall accuracy by itself 
may not be sufficient in evaluating the classification performance for imbalanced learning 
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problems. In our simulations, we adopt various assessment metrics related to the confusion 
matrix for analysis. 

Let { },  p n  be the positive and negative testing examples and { },  Y N  be the 

classification results given by a learning algorithm for positive and negative predictions. A 
representation of classification performance can be formulated by a confusion matrix 
(contingency table) as illustrated in Fig. 9. Again, following the suggestion from [2] [14] 
[60], the minority class is used as the positive class and majority class is used as the 
negative class. 

 

 

Fig. 9 Confusion matrix for performance evaluation 

 

Based on Fig. 2, the metrics used to assess learning from imbalanced data sets in 
our simulations are defined as follows: 

 

Overall Accuracy (OA): 

TP TNOA
TP TN FP FN

+
=

+ + +
                               (24) 

Precision: 

TPPrecision
TP FP

=
+

                                 (25) 

Recall: 

TPRecall
TP FN

=
+

                                  (26) 
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Where β  is a coefficient to adjust the relative importance of Precision  versus Recall  
( β  is set to 1 in our simulation). 

G-mean: 

  

                

G mean positive accuracy nagative accuracy

TP TN
TP FN TN FP

− = ×

= ×
+ +

              (28) 

 

Another popular assessment method for imbalanced learning is the receiver 
operating characteristic (ROC) graph [7] [56] [69]. Based on the confusion matrix as 
defined in Fig. 9, one can calculate the _tp rate  and _fp rate  as follows: 

_
R

TPtp rate
P

=                                     (29) 

_
R

FPfp rate
N

=                                     (30) 

 

ROC space is established by plotting _tp rate over _fp rate  rate. Generally speaking, 
hard-type classifiers (those that only output discrete class labels) correspond to points in 
the ROC space: ( _fp rate , _tp rate ). On the other hand, soft-type classifiers (those that 
output a likelihood of the degree to which an instance belongs to each class label) 
correspond to curves in the ROC space. Such curves are formulated by adjusting the 
decision threshold to generate a series of points in the ROC space. In order to assess 
different classifiers’ performance in this case, one generally uses the area under curve 
(AUC) as an evaluation criterion. A detailed discussion of ROC analysis and its assessment 
for classifier performances can be found in [56] [69]. 

In our current simulation, we use 20 boosting iterations ( 20T =  in the algorithm) 
as suggested in [73] for the ensemble learning. The number of synthetic data generated at 
each boosting iteration is set to be 200% of the number of the minority instances [2]. The 
parameter 1k  and 2k  is set to be 5 and 10, respectively, and the mapping coefficient α  

is equal to 0.3. For SMOTEBoost, SMOTE, ADASYN, BorderlineSMOTE, and 
SMOTE-tomek, the number of nearest neighbors is set to be 5. The cost factor C  for 
AdaCost is set to be 3 according to the suggestion of [23] ( C  should be an integer between 
2 and 9). 

The simulation results are based on the average of 10 runs. At each run, we 
randomly draw half of the data as training data and use the remaining half as the testing 
data. 

Fig. 10 gives several snapshots of the averaged ROC graphs of the RAMOBoost, 
SMOTEBoost, SMOTE, ADASYN, AdaCost, BorderlineSMOTE, and SMOTE-tomek 
methods. Here Fig. 10(a), 10(b), 10(c) and 10(d) represent the results for the German, 
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Ionosphere, Page Blocks, and Phoneme data sets, respectively. These figures indicate that 
RAMOBoost method is competitive when compared to other methods in the ROC space. 
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Fig. 10 The averaged ROC curves for RAMOBoost, SMOTEBoost, SMOTE, ADASYN, 
BorderlineSMOTE, and SMOTE-tomek methods 

 

Table 3 summarizes the performance of the comparative algorithms, in which the 
best performance of each algorithm across each evaluation criteria is highlighted. Table 3 
lists the AUC values for each method; the best performance is also highlighted. 

 

Table 3 Evaluation metrics and performance comparison 

Dataset Methods OA Precision Recall F-measure G-mean 

Abalone 

RAMOBoost 0.9405 0.4968 0.4889 0.4813 0.6808 

SMOTEBoost 0.943 0.5181 0.5348 0.5173 0.7134 

SMOTE 0.9477 0.5886 0.5328 0.5412 0.7166 
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ADASYN 0.9101 0.361 0.4838 0.3892 0.6684 

AdaCost 0.952 0.241 0.4003 0.455 0.6156 

BorderlineSMOTE 0.9493 0.294 0.4855 0.554 0.686 

SMOTE-tomek 0.9441 0.261 0.4319 0.492 0.6433 

Pima- 

Indians- 

Diabetes 

RAMOBoost 0.724 0.5766 0.7467 0.6497 0.729 

SMOTEBoost 0.7229 0.5764 0.74 0.6466 0.7267 

SMOTE 0.7214 0.5746 0.74 0.6496 0.7281 

ADASYN 0.5539 0.4357 0.9709 0.5994 0.5702 

AdaCost 0.744 0.2816 0.61 0.3849 0.7043 

BorderlineSMOTE 0.7018 0.375 0.7656 0.5029 0.7154 

SMOTE-tomek 0.7039 0.3956 0.8102 0.5313 0.7248 

Satimage 

RAMOBoost 0.9195 0.5671 0.7127 0.6312 0.819 

SMOTEBoost 0.923 0.5867 0.6717 0.6276 0.7986 

SMOTE 0.8977 0.4791 0.606 0.5327 0.7465 

ADASYN 0.8422 0.3645 0.8431 0.5084 0.8424 

AdaCost 0.9217 0.552 0.5426 0.371 0.7118 

BorderlineSMOTE 0.8938 0.685 0.9652 0.3752 0.7598 

SMOTE-tomek 0.8957 0.701 0.9361 0.3679 0.773 

Vehicle 

RAMOBoost 0.9655 0.9142 0.9398 0.926 0.956 

SMOTEBoost 0.967 0.9137 0.946 0.929 0.9591 

SMOTE 0.9589 0.891 0.9373 0.9132 0.9511 

ADASYN 0.821 0.5665 0.9927 0.7206 0.8737 

AdaCost 0.9652 0.9132 0.9575 0.371 0.9623 

BorderlineSMOTE 0.961 0.913 0.9652 0.3752 0.9624 

SMOTE-tomek 0.9482 0.9091 0.9361 0.3679 0.9436 

Vowel 

RAMOBoost 0.999 0.9934 0.9931 0.9931 0.9962 

SMOTEBoost 0.9974 0.9842 0.9867 0.9853 0.9925 

SMOTE 0.9794 0.8569 0.9379 0.893 0.9599 

ADASYN 0.9101 0.5095 0.9488 0.6623 0.927 

AdaCost 0.9913 0.903 0.9696 0.9651 0.9813 

BorderlineSMOTE 0.9766 0.871 0.9222 0.9591 0.9515 

SMOTE-tomek 0.9747 0.889 0.9382 0.9624 0.9576 

Yeast 

RAMOBoost 0.9581 0.467 0.4341 0.4418 0.6405 

SMOTEBoost 0.9585 0.4941 0.4732 0.4687 0.6651 

SMOTE 0.9722 0.7557 0.5107 0.5761 0.703 

ADASYN 0.9552 0.5276 0.4891 0.4758 0.681 

AdaCost 0.9718 0.479 0.4524 0.344 0.6593 

BorderlineSMOTE 0.973 0.492 0.4882 0.368 0.6812 
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SMOTE-tomek 0.9768 0.42 0.5107 0.384 0.7049 

Phoneme 

RAMOBoost 0.7921 0.5914 0.9068 0.7158 0.8222 

SMOTEBoost 0.8018 0.6131 0.8524 0.7128 0.8159 

SMOTE 0.786 0.5952 0.8248 0.6899 0.7942 

ADASYN 0.726 0.5137 0.9513 0.6671 0.777 

AdaCost 0.819 0.2473 0.702 0.3657 0.7797 

BorderlineSMOTE 0.7632 0.3308 0.8741 0.4799 0.7918 

SMOTE-tomek 0.7884 0.2985 0.8151 0.4369 0.7965 

Texture 

RAMOBoost 0.999 0.9986 0.9966 0.9976 0.9981 

SMOTEBoost 0.999 0.9976 0.997 0.9973 0.9982 

SMOTE 0.9949 0.9853 0.9863 0.9858 0.9916 

ADASYN 0.9156 0.6837 0.995 0.8101 0.9453 

AdaCost 0.9987 0.9798 0.9953 0.9946 0.9974 

BorderlineSMOTE 0.9928 0.9783 0.9811 0.9917 0.9881 

SMOTE-tomek 0.9976 0.9793 0.9913 0.9937 0.9951 

Spambase 

RAMOBoost 0.9448 0.9244 0.9387 0.9315 0.9438 

SMOTEBoost 0.9435 0.9191 0.9418 0.9302 0.9432 

SMOTE 0.9397 0.9194 0.9311 0.9251 0.9382 

ADASYN 0.7746 0.6424 0.9851 0.7776 0.7904 

AdaCost 0.947 0.8974 0.9413 0.8588 0.9462 

BorderlineSMOTE 0.9291 0.9028 0.936 0.8632 0.9302 

SMOTE-tomek 0.9376 0.9002 0.9384 0.8611 0.9377 

Ionosphere 

RAMOBoost 0.841 0.8572 0.6638 0.744 0.7874 

SMOTEBoost 0.8251 0.8244 0.6346 0.7156 0.7662 

SMOTE 0.8177 0.8026 0.6425 0.7106 0.7643 

ADASYN 0.6749 0.5263 0.7602 0.6198 0.6912 

AdaCost 0.8337 0.8237 0.6059 0.7352 0.7604 

BorderlineSMOTE 0.8206 0.8466 0.6516 0.7078 0.7698 

SMOTE-tomek 0.8166 0.8494 0.6539 0.711 0.7677 

Wine 

RAMOBoost 0.98 0.9525 0.9885 0.9696 0.9813 

SMOTEBoost 0.9787 0.9492 0.9885 0.9678 0.9805 

SMOTE 0.9787 0.9505 0.9885 0.9684 0.9804 

ADASYN 0.7933 0.6094 1 0.7536 0.8382 

AdaCost 0.9764 0.9319 0.9813 0.9648 0.9769 

BorderlineSMOTE 0.9753 0.9419 0.9885 0.9681 0.9778 

SMOTE-tomek 0.9551 0.9467 0.9853 0.9696 0.9629 

Segment 
RAMOBoost 0.997 0.9854 0.9907 0.988 0.9941 

SMOTEBoost 0.9965 0.9853 0.99 0.9876 0.9938 
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SMOTE 0.9958 0.9835 0.9863 0.9848 0.9918 

ADASYN 0.9254 0.6253 1 0.798 0.9556 

AdaCost 0.9965 0.9845 0.9913 0.9843 0.994 

BorderlineSMOTE 0.9954 0.984 0.9869 0.9822 0.9918 

SMOTE-tomek 0.9953 0.984 0.9863 0.982 0.9915 

German 

RAMOBoost 0.7262 0.5602 0.527 0.5409 0.6547 

SMOTEBoost 0.7072 0.5258 0.5126 0.5176 0.6375 

SMOTE 0.685 0.4878 0.557 0.5192 0.642 

ADASYN 0.4918 0.3651 0.8762 0.5143 0.5282 

AdaCost 0.748 0.3963 0.4797 0.5283 0.6446 

BorderlineSMOTE 0.6846 0.4522 0.5754 0.5151 0.6492 

SMOTE-tomek 0.691 0.4777 0.6296 0.5148 0.6711 

Glass 

RAMOBoost 0.9748 0.6169 0.8464 0.7731 0.861 

SMOTEBoost 0.9748 0.648 0.9464 0.743 0.9596 

SMOTE 0.9897 0.894 0.9179 0.8874 0.9491 

ADASYN 0.9421 0.4552 0.7986 0.497 0.8555 

AdaCost 0.991 0.6377 0.9429 0.7722 0.9625 

BorderlineSMOTE 0.9907 0.6368 0.9262 0.704 0.9543 

SMOTE-tomek 0.9879 0.6359 0.9119 0.6988 0.9414 

Page_Blocks 

RAMOBoost 0.97 0.8326 0.8928 0.8614 0.9349 

SMOTEBoost 0.9696 0.834 0.8825 0.8573 0.9297 

SMOTE 0.9594 0.7781 0.8563 0.814 0.9118 

ADASYN 0.9251 0.5862 0.9414 0.7223 0.9322 

AdaCost 0.9704 0.7912 0.8559 0.8469 0.9175 

BorderlineSMOTE 0.9463 0.7853 0.8713 0.8171 0.912 

SMOTE-tomek 0.9576 0.7832 0.8627 0.8168 0.9139 

Sonar 

RAMOBoost 0.78 0.7566 0.7813 0.7672 0.7796 

SMOTEBoost 0.7702 0.7459 0.7748 0.7579 0.7697 

SMOTE 0.7606 0.733 0.7687 0.7485 0.7605 

ADASYN 0.5712 0.5184 0.9815 0.678 0.4624 

AdaCost 0.7721 0.7559 0.7644 0.7597 0.7711 

BorderlineSMOTE 0.7606 0.7364 0.771 0.7494 0.7607 

SMOTE-tomek 0.7442 0.7379 0.8073 0.7144 0.7448 

Winning 
Times 

RAMOBoost 7 10 1 12 9 

SMOTEBoost 2 3 3 1 2 

SMOTE 0 3 1 2 1 

ADASYN 0 0 10 0 1 

AdaCost 6 0 0 0 1 
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BorderlineSMOTE 1 0 1 1 1 

SMOTE-tomek 0 0 0 0 1 

 

From Table 3 and Table 4, we can say that the proposed RAMOBoost algorithm 
can provide competitive results compared to all comparative approaches in terms of OA , 
Precision , F measure− , and G mean− . Furthermore, the empirical results on 
RAMOBoost and SMOTEBoost validate that although RAMOBoost shares the same 
boosting procedure and the same data generation technique with SMOTEBoost, its 
adaptive ranking mechanism for determining the number of synthetic instance for each 
minority example make its performance superior to that of SMOTEBoost. For Recall  
performance, we see that ADASYN seems to provide a better Recall  rate on these data 
sets. This is because ADASYN can learn very aggressively from the boundary since it 
generates synthetic data instances very close to the decision boundary (see Fig. 2(c)). This 
means that ADASYN may push the algorithm to focus on the minority (positive) class data 
to improve the Recall  criteria (see definition in equation (26)), while the overall 
performance may not improve significantly. In other words, if one algorithm classifies all 
testing data as “positive” (minority class), its “ Recall ” rate will be maximized even if the 
overall performance is low. The results in Table 3 show that ADASYN performs better 
than other comparative algorithms in terms of Recall , which only stands for the number of 
correctly classified minority instances, but performs worse in all other assessment metrics, 
such as F-measure and G-mean which represent algorithm’s overall performance on 
imbalanced data sets. 

 

Table 4 AUC performance characteristics 

Dataset RAMOBoost SMOTEBoost SMOTE ADASYN AdaCost BorderlineSMOTE SMOTE-tomek 

Abalone 0.97609 0.92271 0.92291 0.89179 0.92395 0.90322 0.9039 

Pima-Indians-Diabetes 0.79608 0.79825 0.80428 0.8144 0.81805 0.7947 0.81186 

Satimage 0.9486 0.94678 0.89748 0.92234 0.93325 0.90189 0.90251 

Vehicle 0.99487 0.99446 0.99314 0.97517 0.99511 0.99405 0.98948 

Vowel 0.9999 0.99988 0.99615 0.98512 0.99906 0.99552 0.99344 

Yeast 0.74512 0.74878 0.81603 0.77902 0.7792 0.8096 0.8241 

Phoneme 0.90621 0.89472 0.87186 0.86497 0.89395 0.86103 0.87136 

Texture 0.99999 0.99998 0.9992 0.99487 0.99991 0.99856 0.99967 

Spambase 0.98379 0.98329 0.97942 0.96849 0.98552 0.97362 0.97649 

Ionosphere 0.90138 0.88907 0.82093 0.79778 0.88186 0.81265 0.8265 

Wine 0.9994 0.99937 0.99908 0.99607 0.99905 0.99796 0.99753 

Segment 0.99976 0.99978 0.99959 0.99903 0.99974 0.9995 0.99961 

German 0.74139 0.73357 0.71365 0.70182 0.71254 0.7105 0.73469 

Glass 0.99478 0.99429 0.99801 0.97723 0.99741 0.99757 0.99736 

Page_Blocks 0.98899 0.98772 0.97993 0.97621 0.98861 0.97063 0.97754 

Sonar 0.86343 0.86176 0.84311 0.82832 0.76864 0.84205 0.82378 
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Winning Times 10 1 2 0 3 0 0 

 

To evaluate the robustness of RAMOBoost against other comparative algorithms in 
different parameter configurations and scenarios, simulations on tuning the minority 
oversampling ratios and the imbalanced ratio are performed. For space consideration, we 
only present the results on “Abalone” data set here. Again, the neural network with MLP 
with the configuration described as aforementioned is used as the base learner. The 
simulation results are also based on the 10 random runs each of which divides the original 
data set evenly and randomly into training and testing data sets. 

In reference [74], it is suggested that the over-sampling ratio could play a critical 
role for imbalanced learning problems, which motivates our simulation for evaluating the 
performance of RAMOBoost against other comparative algorithms under different 
over-sampling ratio. Specifically, the over-sampling ratio for the minority class is 
increased progressively from 100% to 500% with an interval of 100%. Table 5 displays the 
simulation results of 10 random runs of the averaged AUC of the comparative algorithms 
on learning from this data set, in which the best performance is highlighted, and the 
“Win-Lost-Tie (W-L-T)” information is also given. 

 

Table 5 AUC under different over-sampling ratios 

Over-Sampling ratio RAMOBoost SMOTEBoost SMOTE ADASYN AdaCost BorderlineSMOTE SMOTE-tomek 

100% 0.93202 0.91099 0.91676 0.89424 0.91908 0.90968 0.8867 

200% 0.9308 0.90747 0.91655 0.89257 0.92351 0.90706 0.89791 

300% 0.93244 0.91241 0.92108 0.88736 0.92208 0.90997 0.8977 

400% 0.93146 0.90854 0.9221 0.88713 0.9227 0.90633 0.90664 

500% 0.92374 0.90976 0.92317 0.87863 0.92206 0.91136 0.90995 

W-L-T 5-0-0 0-5-0 0-5-0 0-5-0 0-5-0 0-5-0 0-5-0 

 

The original “Abalone” data set has 28 classes and 4177 examples, in which we 
only employed two classes to evaluate the comparative algorithms, the results of which are 
shown in Table 3 and 4. In order to obtain versatile imbalanced ratio, we manipulate the 
classes’ combination of the original “Abalone” data set to form minority class and majority 
class. Table 6 summarizes the details for such combination policy and the corresponding 
imbalanced ratio. And Table 7 presents the simulation results on the simulation on tuning 
the imbalanced ratio, in which the best performance is highlighted. 

The simulation results as shown in Table 5 and 7 illustrate the robustness of 
RAMOBoost as exposed to different internal (over-sampling ratio) and exterior (data set 
with different imbalanced class ratio) configurations. More importantly, from Table 7, it 
can be observed that RAMOBoost behaves competitive with all other comparative 
algorithms even when the data set is of very imbalanced class distributions. 

 

Table 6 Combination of classes in “Abalone” data set 
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Index Minority Combination Majority Combination # Minority # Majority Imbalanced ratio 

I 
1⊕2⊕22⊕24⊕ 

25⊕26⊕27⊕28 
8⊕9⊕10⊕11 15 2378 0.0063:0.9937 

II I⊕23 8⊕9⊕10⊕11 24 2378 0.01:0.99 

III II⊕21 8⊕9⊕10⊕11 38 2378 0.0157:0.9843 

IV III⊕3 8⊕9⊕10⊕11 53 2378 0.0218:0.9782 

V IV⊕20 8⊕9⊕10⊕11 79 2378 0.0322:0.9678 

VI V⊕19 8⊕9⊕10⊕11 111 2378 0.0446:0.9554 

VII VI⊕18⊕4 8⊕9⊕10⊕11 210 2378 0.0811:0.9189 

VIII VII⊕17⊕15 8⊕9⊕10⊕11 371 2378 0.1350:0.8650 

IX VIII⊕5 8⊕9⊕10⊕11 486 2378 0.1797:0.8303 

X IX⊕6 8⊕9⊕10⊕11 745 2378 0.2386:0.7614 

 

Table 7 AUC under different imbalanced ratio 

Imbalanced 
Ratio 

RAMOBoost SMOTEBoost SMOTE ADASYN AdaCost BorderlineSMOTE SMOTE-tomek 

0.0063:0.9937 0.97887 0.97558 0.94373 0.94163 0.96915 0.9166 0.90582 

0.01:0.99 0.90648 0.90557 0.90495 0.90412 0.9049 0.84195 0.8784 

0.0157:0.9843 0.91886 0.91913 0.92122 0.92361 0.92921 0.91407 0.89492 

0.0218:0.9782 0.95542 0.95072 0.93376 0.93219 0.95144 0.89655 0.92929 

0.0322:0.9678 0.9584 0.9523 0.94371 0.93093 0.95562 0.93095 0.93487 

0.0446:0.9554 0.94454 0.93652 0.91817 0.92162 0.94109 0.86302 0.90876 

0.0811:0.9189 0.95025 0.94594 0.93479 0.9348 0.95068 0.92926 0.91392 

0.1350:0.8650 0.91502 0.90501 0.89994 0.87255 0.91194 0.89588 0.8867 

0.1797:0.8303 0.92274 0.91745 0.91241 0.90206 0.91994 0.90475 0.90704 

0.2386:0.7614 0.89696 0.884 0.884 0.87725 0.89389 0.86997 0.86978 

W-L-T 8-2-0 0-10-0 0-10-0 0-10-0 2-8-0 0-10-0 0-10-0 

 

 

3.2 ADAIN – An adaptive incremental learning framework (ADAIN) for learning from the 
data flow 

In order to validate the performance of the proposed ADAIN framework, 4 real-world data 
sets with varied size and number of classes from UCI machine learning repository [65] are 
employed to accomplish the comparative study in this research. The detailed information 
of these datasets can be found in Table 8. 

 

Table 8 Information regarding the simulation data sets 
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Data set # feature # example # class 

spambase 57 4601 2 

magic 10 19020 2 

waveform 40 5000 3 

sat 36 6435 6 

 

In this simulation, each dataset is initially randomly sliced into 20 chunks with 
identical size. At each run, one chunk is randomly selected to be the testing data, and the 
remaining 19 chunks are sequentially fed to the classifier over time for incremental 
learning. All the simulation results for each datasets are averaged on 20 runs. CART is 
employed as the base learner in our current study. For the regression model based mapping 
function design, we adopted the MLP structure with 10 hidden layer neurons and 1 output 
neuron. The number of input neurons is set equal to the number of features for each data 
set. 

Fig. 11 visualizes the prediction overall accuracy tendency over time of ADAIN as 
compared to [49], where Fig. 11(a), 11(b), 11(c), and 11(d) represents the data sets 
“spambase”, “magic”, “waveform”, and “sat”, respectively. From these figures, one can 
clearly see that the classifier's performance can increase over time, which means the 
system can adaptively learn over time, and accumulate knowledge to facilitate the future 
learning and decision-making processes. Table 9 shows the numerical accuracy for each 
individual class and the entire datasets. It can be intuitively figured that ADAIN can 
remarkably improve the learning performance compared to the method in [49].  
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Fig. 11 Prediction overall accuracy  

 

Table 9 The averaged prediction accuracy 

Data sets Methods 
Prediction Accuracy 

class 1 class 2 class 3 class 4 class 5 class 6 Overall 

spambase 
ADAIN 0.882 0.9352 -- -- -- -- 0.9142 

IMORL 0.9106 0.8929 -- -- -- -- 0.9 

magic 
ADAIN 0.9315 0.7137 -- -- -- -- 0.8549 

IMORL 0.8404 0.7836 -- -- -- -- 0.8205 

waveform 
ADAIN 0.7843 0.823 0.8193 -- -- -- 0.8132 

IMORL 0.7575 0.8 0.8009 -- -- -- 0.7814 

sat 
ADAIN 0.9602 0.9131 0.9169 0.4837 0.6417 0.8494 0.8387 

IMORL 0.9 0.8918 0.8566 0.5673 0.6841 0.7897 0.8079 

 

We use the Hotelling's T-square statistic test, abbreviated as “ t -test”, to measure 
the statistical significance of the prediction accuracy between ADAIN and the approach in 
[49]. From Table 10, one can find that ADAIN can statistically outperform IMORL for all 
the simulation datasets. 

 

Table 10 t -test for prediction accuracy 

Data set 
ADAIN IMORL 

| |Z  
Accept or 

reject 0H  μ  σ  μ  σ  

spambase 0.9142 0.023 0.8999 0.0215 2.0312 Reject 

magic 0.8549 0.0091 0.8205 0.0168 8.0576 Reject 

waveform 0.8132 0.0102 0.7814 0.0117 9.1696 Reject 

sat 0.8387 0.0493 0.8079 0.0351 2.2736 Reject 
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To have a more comprehensive analysis of the performance, we also employ 
Receiver Operating Characteristics (ROC) curve [72] to demonstrate the effectiveness of 
the proposed ADAIN framework. Fig. 12(a) and Fig. 12(b) represent the ROC curves for 
datasets “spambase” and “magic”, respectively. 
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(a)                                         (b) 
Fig. 12 ROC curves for selected simulation data sets 

 

The Area Under ROC Curve (AUC) assessments as shown in Table 11 are also given for 
numerical understanding of the comparison between ADAIN and [49]. Note here in lieu of 
simply averaging the AUCs across the 20 runs, the averaged AUCs are derived by vertical 
averaging as suggested by [72]. For datasets with more than 2 classes, their averaged 
AUCs are calculated by summing the averaged AUC of the reference ROC curves 
weighted by the class ratio [75]. From Table 11, one can see that the proposed ADAIN 
framework is also very competitive against our previously proposed IMORL algorithm in 
terms of AUC evaluation metric. 

 

Table 11 The averaged AUCError! Not a valid link. 

3.3 SERA – A Selectively Recursive Approach towards nonstationary imbalanced 
data classification 
In this project period, we adopt the synthetic dataset to testify the effectiveness of our 
proposed algorithm. Despite the popularity of STAGGER [76] and the SEA [77] synthetic 
datasets in stream data mining, we use the synthetic dataset suggested in [61] which is 
more complex in classification boundary design and has more well-founded concept drifts 
mechanism embedded in. The generation of such synthetic dataset is shown as follows: 

1. The classification boundary is designed as: 

( ) 1 0
1

d

i i d i
i

g a x x a− +
=

= −∑x                               (31) 
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where ix  is the i th feature of instance x , ia  is the i th feature coefficient assigned to 

ix , and d  is the number of dimensions of feature space. The class label of synthetic 

instances is decided by ( )( )sgn g x . 

2. The designed concept drifts occur both in the feature probability ( )p x  and the 

conditional class label probability ( )|p y x  [61], since the probability of target concept 

can be decomposed according to Bayes theory as follows: 

( ) ( ) ( ), |p y p y p= ⋅x x x                               (32) 

The concept drifts of ( )p x  and ( )|p y x  are reflected by the consistently 

varying mean of the features and the feature coefficients as ( )1i is tμ +  and ( )1i ia s t+ , 

where iμ  and ia  are the i th feature of the feature mean and the i th feature coefficient 

initialized by a randomized real number between [ ]0,  1 . To manipulate the concept drifts, 

at different timestamp, is  is assigned an integer randomly alternating in { }1,  1− , and t  

is randomized as a real number in the interval [ ]0,  1 . 

Based on this mechanism, Fig. 13 gives some snapshots of the synthetic data sets 
over time. One can see that its feature distribution and the decision boundary are both 
varying over time.  
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Fig. 13 Snapshots of the synthetic data set drifting over time 

 

In our simulation, the number of the feature dimension is set to be 10, and the imbalanced 
ratio of each data chunk is set to be 1:100 globally. 

-- Employ SMOTE [14] to balance the imbalanced ratio of current data chunk, and then 
apply a single classifier to learn from it, which is denoted as “SMOTE” in the display of 
simulation results. 

-- Employ ADASYN [57] to balance the imbalanced ratio of current data chunk, and then 
apply a single classifier to learn from it, which is denoted as “ADASYN” in the display of 
simulation results. 

-- Accommodate all previous minority examples to balance the imbalanced ratio of current 
data chunk, and then apply the “uncorrelated Bagging” [61] to learn from it, which is 
denoted as “uncorrelated Bagging” in the display of simulation results. 

-- Selectively accommodate previous minority examples to balance the imbalanced ratio of 
current data chunk, and then apply one single classifier to learn from it, which is denoted as 
“Single” in the display of simulation results. 

-- Selectively accommodate previous minority examples to balance the imbalanced ratio of 
current data chunk, and then apply BBagging with cost factor k  being 1, 4 or 8 
respectively, which are denoted as “BBagging(CF=1)”, “BBagging(CF=4)”, 
“BBagging(CF=8)” in the display of simulation results. 

The uncorrelated Bagging cuts the majority data chunk into multiple distinct 
smaller parts to match the size of the set withholding all the minority examples 
accumulated insofar. When the number of accumulated minority examples is tantamount to 
or exceeds that of the majority examples, there is no need for uncorrelated Bagging to 
divide the majority data set, and thus only one hypothesis is generated; it cannot be 
regarded as an ensemble approach at this point. 

We set the number of chunks in stream data to be 100. Each of the chunks carries 
1000 examples for training purpose and 10000 instances for testing purpose. In our 
simulation, the post-balance ratio f  is set to be 0.2 and 0.3 to observe its impact on the 
algorithm's performance. We install 3 observation points at chunks with timestamps 

10f × , 50, 80 to evaluate the performance trendline of the algorithms. 

The neural network with multi perceptron (MLP) is used as the base classifier in 
our simulation. The number of hidden layer neurons is set to be 4. And the number of input 
neurons is set to be 10, i.e., the number of features of the synthetic dataset. Since there are 
two classes in our current simulation, the number of output neurons is set to be 2. Sigmoid 
function is used as the activation function, and the training epochs is set to be 100, with a 
learning rate being 0.1. For the BBagging, the number of iteration is set to be 10. 

The evaluation metrics of the simulation results include OA , Precision , Recall , 
F measure− (when 1β = ) and G mean− , which are defined in equations (24) to (28). 
The simulation results when 0.2f = , 0.3 at different observation points are given in Table 
12 and Table 13, respectively. 
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Table 12 Simulation results on 0.2f =  

0.2f =  

Timestamp Algorithm OA Precision Recall F-measure G-mean 

20 

SMOTE 0.9843 0.087 0.06 0.071 0.2442 

ADASYN 0.9807 0.1092 0.13 0.1187 0.3586 

uncorrelated Bagging 0.9623 0.089 0.3 0.1373 0.5392 

Single 0.9623 0.089 0.3 0.1373 0.5393 

Bbagging(CF=1) 0.9688 0.0923 0.24 0.1333 0.484 

Bbagging(CF=4) 0.8981 0.0594 0.62 0.1085 0.7474 

Bbagging(CF=8) 0.8474 0.0499 0.79 0.0938 0.8185 

50 

SMOTE 0.9425 0.0297 0.15 0.0496 0.3776 

ADASYN 0.951 0.0267 0.11 0.043 0.3249 

uncorrelated Bagging 0.8778 0.0483 0.6 0.0894 0.7269 

Single 0.8811 0.0421 0.5 0.0776 0.6652 

Bbagging(CF=1) 0.8953 0.0537 0.57 0.0982 0.7157 

Bbagging(CF=4) 0.8416 0.0327 0.52 0.0616 0.6628 

Bbagging(CF=8) 0.7941 0.032 0.67 0.0611 0.73 

80 

SMOTE 0.984 0.1739 0.16 0.1667 0.3985 

ADASYN 0.9832 0.1304 0.12 0.125 0.345 

uncorrelated Bagging 0.9691 0.1057 0.28 0.1534 0.5228 

Single 0.9682 0.1135 0.32 0.1675 0.5585 

Bbagging(CF=1) 0.9746 0.1468 0.32 0.2013 0.5603 

Bbagging(CF=4) 0.9545 0.0993 0.44 0.1621 0.6498 

Bbagging(CF=8) 0.9428 0.0816 0.46 0.1386 0.6603 

 

Table 13 Simulation results on 0.3f =  

0.3f =  

Timestamp Algorithm OA Precision Recall F-measure G-mean 

20 

SMOTE 0.9772 0.0429 0.06 0.05 0.2433 

ADASYN 0.9815 0.043 0.04 0.0415 0.1991 

uncorrelated Bagging 0.9153 0.058 0.49 0.1037 0.6712 

Single 0.9153 0.058 0.49 0.1037 0.6712 

Bbagging(CF=1) 0.9183 0.0717 0.6 0.1281 0.7436 

Bbagging(CF=4) 0.7835 0.0355 0.79 0.068 0.7867 

Bbagging(CF=8) 0.7024 0.0282 0.86 0.0546 0.7763 
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50 

SMOTE 0.9445 0.0672 0.2 0.0672 0.4364 

ADASYN 0.9331 0.0404 0.25 0.0695 0.4848 

uncorrelated Bagging 0.821 0.0388 0.71 0.0735 0.7027 

Single 0.8511 0.0385 0.58 0.0723 0.7037 

Bbagging(CF=1) 0.8575 0.0484 0.71 0.0906 0.7809 

Bbagging(CF=4) 0.7361 0.0268 0.72 0.0517 0.7281 

Bbagging(CF=8) 0.6649 0.0226 0.77 0.0439 0.715 

80 

SMOTE 0.9839 0.1039 0.08 0.0904 0.2819 

ADASYN 0.9847 0.1045 0.07 0.0838 0.2638 

uncorrelated Bagging 0.9501 0.1018 0.51 0.1697 0.6977 

Single 0.9565 0.0905 0.37 0.1454 0.5967 

Bbagging(CF=1) 0.9668 0.1209 0.37 0.1823 0.6 

Bbagging(CF=4) 0.9335 0.0739 0.5 0.1284 0.6779 

Bbagging(CF=8) 0.9144 0.0605 0.52 0.1083 0.6911 

 

As can be seen from Table 12 and Table 13, the over-sampling techniques are 
always best at “OA ”. This is possibly because the synthetic instances are always generated 
by interpolating between the two spatially nearby minority examples that they don't risk so 
much as to undermine non-trivially the target concepts. Yet since the synthetic instances 
are now drawn from the same distribution as the real minority examples, they also cannot 
help much to improve the prediction performance on minority examples (significantly 
lower “ Recall ” than all other comparative algorithms). Furthermore, their overall 
performance is still below a fixed prediction, i.e., predict all instances belong to majority 
examples so as to achieve 99% “OA ”. Comparing other metrics, our proposed algorithms 
(Single, BBagging(CF=1, 4, or 8)) demonstrate an improvement from 0.2f =  to 

0.3f =  (nearly outperform the three other algorithms for comparison in all metrics except 
“ OA ”). Also note that our proposed algorithms perform remarkably better than other 
algorithms in “ Recall ” which represents the number of correctly predicted minority 
instances. This fact shows the superiority of our algorithms on learning the target concept 
of the minority examples. 

Fig. 14 demonstrates the ROC curves on the 6 observation points, where Fig. 14(a), 
11(b) and 14(c) correspond to the timestamp 20, 50 and 80 when 0.2f = ; Fig. 14(d), 
11(e) and 14(f) correspond to the timestamp 30, 50 and 80 when f=0.3. As can be seen from 
the ROC curves, the over-sampling techniques behave terribly worse than the other 
algorithms, which is consistent with our previous discussion. 
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Fig. 14 ROC curves on the observation points in simulation 

 

BBagging performs worse than uncorrelated Bagging when 0.2f = , however the 
“Single” classifier performs obviously better than uncorrelated Bagging. Both BBagging 
and “Single” classifier perform generally better than uncorrelated Bagging when 0.3f = . 
This is probably because more accommodated previous minority examples give rise to a 
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performance improvement. Also it is noted that the “Single” classifier outperforms all 
other algorithms in the observation point with timestamp 80 when 0.3f = . This result 
justifies our claim that ensemble approach is not necessarily better than a single hypothesis 
discussed previously. 

3.4 Detection of Network Intrusions 

3.4.1 System Model And Dataset 
In this project period, we evaluate our algorithm with the real-world data collected from the 
integrated network based Ohio University’s network detective service (INBOUNDS) 
system. This system is a real-time based network IDS developed at Ohio University. We 
suggest interested readers refer to [105] for a detailed description of the system. Briefly 
speaking, the INBOUNDS system can be statistically described by six random variables. 
The parameters include: (1) INTER that describes the interactivity and defines the number 
of questions per second during a particular period; (2) ASOQ that is the average size of 
questions; (3) ASOA that is the average size of answer; (4) LQAIT that is log (base 10) of 
question-answer idle time (in seconds) that the server takes before responding to a question; 
(5) LAQIT that is log (base 10) of answer-question idle time that the client takes to ask 
another question; and (6) DOC that is the duration of connection (in seconds). All features 
are measured in a particular period MT  that is tunable and is set to 60 seconds for all 
experiments in this project. 

We collected 7194 data samples in our current simulation. Table 14 summarizes 
several important statistics of the data, and Fig. 15 illustrates the histograms of the six 
features.  

 

Table 14 Statistics of the Dataset 

 Max Min Mean Median 
Standard 
Deviation 

INTER 17 0 0.8295 1 0.7727 

ASOQ 32120 0 589.1202 416 743.9734 

ASOA 4344600 0 6802.3 1014 59464 

LQAIT 0.729 -10 -1.383 -1.0850 0.8743 

LAQIT 1.397 -10 -3.7143 -3.3605 3.3241 

DOC 558.58 0 9.4632 0.4930 27.2444 

 

 



 51

 

Fig. 15 Histograms of the features. 

3.4.2 Simulation Results 
We use the parameter settings for SOM and intrusion detection as follows. The number of 
neurons A  is 200, the initial learning rate 0η  is set to 3, the initial width of topological 

neighborhood 0σ  is set to 25, and the time constants in cooperative phase and adaptive 

phase are 310.6675
log

1000

0
=

σ
 and 1000, respectively. The number of iteration of training is 

set to 300 times the number of neurons, i.e., 60000300 =⋅= AT . The width of interval used 

for searching the cutting limits ξ  is calculated as 
( ) ( )

sN
XX minmax −

=ξ , where sN  is a 

tunable parameter. Too small sN  will lead to less accuracy, whereas too large sN  will 

increase the computational load of the system. Here, we set sN  to 5105× . The 
simulations are conducted using an Intel Duo Core CPU with 2.0GHz and 2 GB RAM 
memory under the MATLAB version 7.4.0.287 (R2007a) environment. 

In Table 15, we present the experimental results using both methods, the traditional 
KDE and the KDE based on SOM, when the cutting probabilities α  and β  are both set 
to 0.25%, i.e., the confidence level is 99.5%. For each random variable, the simulation 
results of the proposed algorithm are benchmarked against the traditional KDE. The first 
column of results presents the total time consumed by both methods. We further 
decompose the total computational time into the second and third columns, the time for 
SOM preprocessing that can be considered as an overhead and the time for KDE operation. 
The fourth and the sixth columns are the obtained upper limit and lower limit, i.e., λ  and 
μ , respectively. The fifth and the rightmost columns present the number of intrusions 
detected in the upper and the lower outlier regions, respectively. As can be noticed from 
table 15, the proposed algorithm can dramatically reduce the computational cost compared 
with the traditional KDE methods, while maintaining its detection accuracy. Fig. 16 shows 
the intrusions detected in the input data with respect to each random variable. The dotted 
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lines show the estimated pdfs for the input samples, and those that are surrounded by 
circles are the detected intrusions by our method.  

We would also like to point out that different cutting probabilities may result different 
intrusion detection results. In others word, the cutting probabilities can be considered as the 
security level that reflect the risk tolerance of the IDS system. Large cutting probabilities 
indicates that the system is more risk averse, and attempts to reduce type II errors, or false 
negative errors by capturing all potential intrusions. But it may trigger much more frequent 
false alerts and report intrusions when in reality they are not. Moreover, large cutting 
probabilities may increase the computational load of the IDS system. On the contrary, 
small α  and β  indicates that the system is more speed seeking. This may reduce type I 
errors, or false positive errors, but it may not be able to capture someone misrepresenting a 
network activity that is intended to be malicious or intentionally harmful. 

 

Table 15 Simulation results of intrusion detection when %25.0== βα  

 

Tim
e  

(Tot
al) 

Time  
(SOM) 

Time   
(KDE) 

Upper 
Limit λ  

# Intrusions 

in upperΘ  
Lower 

Limit μ  
# Intrusions 

in lowerΘ  

INTER 

KDE 
408.
11 

0 408.11 7.2529 18 0 0 

KDE 
+SOM 

60.1
9 

29.41 30.78 7.7431 16 0 0 

ASOQ 

KDE 
396.
53 

0 396.53 3841.9 18 52.0487 15 

KDE 
+SOM 

62.0
3 

28.92 33.11 4061.4 14 51.856 15 

ASOA 

KDE 
361.
45 

0 361.45 356330 18 0 0 

KDE 
+SOM 

60.2
6 

28.75 31.51 376110 14 0 0 

LQAIT 

KDE 
549.
33 

0 549.33 0.1231 8 -4.921 17 

KDE 
+SOM 

70.9
0 

28.88 42.02 0.1165 8 -4.8797 20 

LAQIT 

KDE 
1749

.5 
0 1749.5 1.397 0 -10 0 

KDE 
+SOM 

126.
66 

29.10 97.55 1.397 0 -10 0 

DOC 

KDE 
293.
96 

0 293.96 208.5155 18 0 0 

KDE 
+SOM 

61.6
9 

28.81 32.88 226.7989 17 0 0 
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Fig. 16 Intrusions detected based on KDE and SOM by six observed features 

 

4.  FPGA­based  Reconfigurable  Platform  for  Video  and 
Image Processing 
In this project period, we have also developed a general-purpose, multi-task, and 
reconfigurable platform for video and image processing [109]. Generally speaking, a 
complex video application requires simultaneous data processing among different 
modules. The highly parallel data operation characteristic of FPGA provides a unique 
advantage of its application for such a purpose. According to different application 
requirements and specifications, different categories of FPGA chips can be used. In our 
current design, we use a low-cost high-end FPGA product, the Virtex-II Pro family 
(XC2VP30) as the prototype platform. Fabricated in 0.13um process technology, the 
Virtex-II Pro family provides a good platform to meet different design requirements. For 
instance, the XC2VP30 FPGA includes dual Power-PC cores, over thirty thousand logic 
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elements and 2Mbits embedded RAM [110]. Compared to the conventional DSP based 
design, the XC2VP30 FPGA can efficiently implement the multiply and accumulate 
(MAC) operations in parallel, and the behavior of each processor or peripheral core can 
be customized. Fig. 2 provides a system level architecture of the proposed video 
processing platform. 

 

 

Fig. 17 The proposed system level architecture 

 

In our system, a video analogue to digital conversion (ADC) board is used to capture 
the national television system committee (NTSC) signal and digitize it into CCIR 
601/656 format. The architecture in Fig. 17 provides the flexibility of implementing 
different functional modules for video and image processing. In our current design, we 
have implemented three processing functions: zoom-in, zoom-out and edge-detection. Fig. 
18 shows the data processing flow of the proposed system. One can easily extend this 
architecture to include more modules, or to test their own design concepts and algorithms 
based on this platform. 
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Fig. 18 Data processing flow of the proposed system 

From Fig. 18 one can see, the FPGA implementation of the proposed system includes 
five major functional modules (the highlighted ellipses): the user-specific functional 
modules, the video mixer module, the color space converter module, the de-interlace 
module and the inter-integrated circuit (I2C) configuration module. The user-specific 
functional module implements most of the functionalities according to different video 
processing applications. This functional box can be extended in different application 
scenarios. The video mixer module can mix different video layers by the Alpha blending 
mixer function. This module supports both the picture-in-picture mixing and image 
blending. Each video layer can be independently displayed at running time. The color 
space converter module transforms the incoming video data between color spaces, which 
are specified by three coordinate values. This module supports the pre-defined conversions 
between standard color spaces, and allows user-specified coefficients to translate between 
any two three-valued color spaces. Interlaced video is commonly used in television 
standards such as phase alternation line (PAL) and NTSC. However, progressive video is 
required for LCD displays. Therefore, the de-interlace module converts interlaced video to 
progressive video. We use the embedded PowerPC405 microprocessor to achieve the I2C 
configuration function by programming the operational model of the analog device, the 
ADV7183B video decoder on the daughter card. 

From Fig. 18 one can see, one of the advantages of the proposed system is that it 
provides an extendable module to implement different functionalities according to 
different application requirements. This provides the flexibility of using this system as a 
general-purpose video and image processing platform across different application 
domains. In our current research, we implement the edge detection and scaling (zoom-in 
and zoom-out) functions, which are important procedures in many complex video 
processing applications. 

4.1 Four-direction Edge Detection 
Edge detection is a fundamental and critical technique in most image processing 
applications to obtain useful information before feature extraction and object 
segmentation. This process detects outlines of an object and boundaries between objects 
and the background. In this research, we implement the four-direction Sobel operator 
[111] for edge detection. The detection resolutions and filter coefficients can be 
dynamically changed during the running time. 

Generally speaking, the Sobel operator is based on a two-dimensional spatial 
gradient measurement on an image to detect the edges. This is implemented by 
calculating the convolutions of the image with a filter mask (convolution kernel) to 
calculate the approximate gradient magnitude [111]. Typically, the convolution kernel is 
moved pixel-by-pixel and line-by-line across the image, which can be defined as: 
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Where ( ),g i j  represents the convolution kernel, n  and m  is the size of the 

convolution kernel at two dimensions, and ( ),f i j  and ( ),h i j  represents the original 

and filtered image, respectively.  

A 3 by 3 kernel is used in our design to produce the map of intensity gradients. This 
is implemented by using the four-direction gradients calculated by convoluting the source 
video frame with the four-direction kernels. Fig. 19 illustrates this idea. 

 

 

Fig. 19 Four-direction edge detection 

 

In order to implement this four-direction edge detection, a generic 2-D image filter is 
proposed in Fig. 20. In this design, two line buffers and six registers are used to store the 
data flow and provide access to the neighborhood pixels. The incoming pixels are shifted 
through line buffers to create a delay line, which are sent to the filter array 
simultaneously with pixels from all the relevant video lines. At each filter node, the pixel 
is multiplied with the appropriate filter coefficients as indicated in Fig. 19. All the 
multiplier results are added together at the adder tree to produce the filter middle point 
output result. From Fig. 20 one can see, four additions and nine multiplications are 
needed to calculate the output value of the convolution. 

 

 

Fig. 20 Design of the four-direction edge detection 
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4.2 Scaling Functionalities: Image Zoom-in and Zoom-out 
Scaling is another widely used technique in many video processing applications. In this 
research, we implement the zoom-in and zoom-out functions in the extendable functional 
module.  

As far as the zoom-in function is concerned, there are several popular algorithms 
such as nearest neighbor method and bilinear interpolation method [112] [113]. Our 
current design supports both methods and can be configured to change resolutions and/or 
filter coefficients at running time. As an example, Fig. 21 gives a detailed design 
architecture of the bilinear interpolation method. Without lose of generality, we assume 
the upscale factor is two and one need to zoom in as four times as the original image. Fig. 
21 illustrates the method that is used to generate new pixels and new lines of the image. 
First, new pixels between line n  and line 1n +  are generated with a combination factor 
of 1/2. Then, new pixels between the two vertical pixel lines are created. In our design, 
two video frame buffers are used: one is used to store the luminance signals and the other 
one is used to store the chroma signals. 

 

 

Fig. 21 Design of the zoom-in function for video processing 

 

Fig. 22 illustrates the idea of implementing the zoom-out function. In order to 
eliminate the frequency mixing effect, the incoming images are first passed through a 
low-pass filter. The new pixels are then calculated by bilinear interpolation method. 
Assuming the zoom-out image is a quarter of the original image, Fig. 22 illustrates the data 
flow to implement this, where bC  and rC  represent video chroma data, and Y  
represents video luminance data. Since a digitalized NTSC video line includes 720 pixels, 
we need to calculate 360 Y  signals and 180 bC  and rC  signals per line. Furthermore, in 
order to fulfill the zoom-out output timing, a CIF frame buffer is used to store the generated 
new pixels. 
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Fig. 22 Design of the Zoom-out function for video images 

 

4.3 System Implementation and Experimental results 

4.3.1 System Development 
We implement the entire platform based on the Xilinx Virtex-II Pro development system 
[114]. Fig. 23 shows the hardware platform with major components. The on board 
XC2VP30 FPGA chip has about 30,816 logic cells, 136 18-bit multipliers, 2,448Kb of 
block RAM, and two PowerPC Processors. The DDR SDRAM DIMM can support up to 
2Gbytes of RAM. This board also has many useful interface ports, such as the 10/100 
Ethernet port, compact flash card slot, XSGA video port, RS-232 port, and others. It also 
has various expansion connectors to expand the usability of this board to meet the 
requirements of different video and image processing applications. Our major purpose of 
this system is to implement the entire hardware platform to provide a general solution for 
video and image processing, and demonstrate its effectiveness through various application 
scenarios. 
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Fig. 23 The proposed FPGA platform. 

In our design, we use four embedded block buffers to store the video data. Buffer1 and 
buffer3 are used to store odd field data, and buffer2 and buffer4 are used to store even field 
data. This arrangement can avoid odd field data displaying on even field. The detailed 
architecture is shown in Fig. 24. 

 

 

Fig. 24 The ping-pong architecture for video data processing 

 

Considering the zoom-in module as an example, when the system processes the odd field 
data nF , its output nS  will be written into buffer1. At the same time, the previously 

processed block 2−nS  is mixed with the current frame nF  to generate the final output 

stream. The input-output order of these two buffers will change when the next odd field is 
presented. Symmetrically, when the even field 1+nF  is presented, buffer 4 stores its output 

1+nS  and buffer 2 outputs the previously processed block 1−nS . The detailed timing and 

buffer operation diagram is illustrated in Fig. 25. This ping-pong architecture provides an 
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efficient way to avoid two different operations affecting the same buffer simultaneously. In 
order to increase the embedded memory resource for such operations, one can use the 
extended memory with the external DDR-SDRAM provided by the Virtex-II board.  

 

 
Fig. 25 The timing and bugger operation diagram 
 
To verify the timing and logic functions, the entire system is simulated by the Xilinx 

Integrated Software Environment (ISE 9.1i) toolsets for extensive simulation and logic 
analysis. Fig. 26 shows a snapshot of the system logic and timing simulation results. The 
system operation clock is 27MHz (the clk_27 signal). The pcount signal counts the number 
of line pixels, and the firstline_data, secondline_data and thirdline_data represent the input 
video data of three lines. We operate the line buffer through fifo_wen and fifo_ren signal, 
which generates the background signal (background7) by delaying proper number of 
clocks from the original input video stream. By mixing the background signal and the 
processed video data (the f_data signal), we can get the final output signal (the SDI_O 
signal). From Fig. 26 one can see that a total of 10 clocks processing time is needed for one 
pixel operation. 
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Fig. 26 A snapshot of the system logical simulation 
 

The synthesized RTL level circuitry of the entire system is shown in Fig. 27, which 
includes the major components of the video processing module (edge detection, zoom-in 
and zoom-out), the two line buffers (see Fig. 20 for details), the color space converter, 
timing generation modules, and others. The final implementation includes a total 
NAND-equivalent gate counts of 5,154,734. Table 16 summarizes the major resource 
utilization characteristics of the final system, from which one can see the final system 
utilizes about 20% of logic resource, 50% of memory on chip, and has total power 
consumption around 203mw. 

 

 

Fig. 27 Synthesized RTL level circuitry of the entire system 

 

Table 16 Resource utilization of the entire system 

Hardware resource Availab Us Utilizati
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le ed on 

Number of occupied Slices 13696 
28

69 
20% 

Total Number of 4 input LUTs 27392 
52

93 19% 

Number of bonded IOBs 556 42 7% 

Number of PPC405s 2 1 50% 

Number of Block RAMs 136 70 51% 

Number of MULT18X18s 136 5 3% 

Number of GCLKs 16 2 12% 

4.3.2 Simulation and Experimental Results 
In this section, we demonstrate the effectiveness of the hardware system for different video 
processing applications. In the first experiment, we use the camera system to capture image 
data from different environments. Fig. 28 (a) shows the original image and Fig. 28 (b) 
illustrates the effects of the edge detection function. Fig. 28 (c) demonstrates all the 
functional modules in the same window, including the edge detection, zoom-in and 
zoom-out. All these functions can be controlled easily by the push buttons on the FPGA 
board (see Fig. 23 for system details).  

 

 

Fig. 28 System performance based on the camera input data 

 

In the second experiment, we use a DVD player to provide the input video data for 
processing. Fig. 29 shows a snapshot of the processing results. As one can see, the 
proposed FPGA-based system can provide effective results in this situation. 
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Fig. 29 System performance based on the video data 

 

5. Potential Applications 
During this project period, we have developed various computational intelligent 
algorithms and models for data mining, tested their applications across different data sets, 
and evaluated their performances. Here we will briefly summarize the major research 
results and identify their potential applications. 

In this project, we have proposed a ranked minority oversampling approach in 
boosting for imbalanced learning problems. The key characteristics of RAMOBoost are 
adaptive learning and reduction of bias. This is accomplished by adaptively shifting the 
decision boundary towards those difficult examples in both minority and majority 
examples, and systematically creating minority synthetic instances based on the 
distribution function Simulation results on 16 datasets across various assessment metrics, 
including OA , Precision , Recall , F measure− , G mean− , and ROC curves, 
demonstrate the effectiveness of the proposed method. 

As a new method to the imbalanced learning problems, there are several 
interesting future research directions. For instance, RAMOBoost in our current study is 
focused on handling the datasets with continuous features. It can be extended to deal with 
the datasets with nominal features by adopting the SMOTE-N method in [14]. Second, 
RAMOBoost in our current simulation is only evaluated on two-class imbalanced 
problems. It can be generalized to handle multi-class imbalanced learning problems to 
improve its applicability in practice. Finally, similar to many of the existing imbalanced 
learning algorithms, there are several parameters needed to be decided for RAMOBoost. 
We have shown some empirical results regarding this issue in this article, and we also 
would like to note that a systematical and adaptive way to adjust those parameters could 
be a challenging while important issue for this method to be applied across different 
application domains. Our group is currently investigating all these issues. Motivated by 
our initial results in this article, we believe that RAMOBoost may provide new insights to 
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the imbalanced learning problems, and have the potential to be a powerful tool in many 
application domains. 

Based on the adaptive learning and ensemble learning methodology, the proposed 
adaptive incremental learning framework can automatically learn from data flow, 
accumulating experience, and use such knowledge to facilitate future learning and 
decision-making processes. We presented the system-level architecture and learning 
algorithm in detail. The effectiveness of our proposed approach is empirically verified on 
4 real-world datasets in terms of prediction accuracy, ROC curve and the related AUC. 
The statistical test also validates the effectiveness of this framework. 

There are a number of interesting topics for future research. For instance, it would 
be interesting to analyze the theoretical influence of the mapping function choice for the 
proposed method, and, if possible, to come up with some more effective approaches, e.g., 
density estimation, to further improve our incremental learning framework. Besides, in 
the incremental learning scenarios, it is not uncommon that new concepts may be 
unexpectedly introduced during the learning life, i.e., the concept drifting/shifting issue. 
The learning capability and characteristic of the proposed framework to adaptively adjust 
to such new concepts could be an important topic for future research. Motivated by the 
results in this article, we believe that the ADAIN framework may not only provide 
critical new insights into the adaptive incremental learning field, provide a powerful 
technique for different incremental learning applications, but it will also inspire and 
motivate future research opportunities in the community on this subject. 

The proposed selectively ranked approach we proposed in this project period is 
aimed to learning from the imbalanced stream data with drifting target concepts. We 
argue that the accommodation of previously coming minority examples into the current 
training process is much more efficient and effective than the conventional stream data 
mining methods to learn from the imbalanced data stream. Rather than accepting all 
previously minority examples as existing approach, we propose to limit the number of 
accepted previous minority examples proportional to the size of the current majority set. 
The priority order of acceptance is decided by Mahalanobis distance. We also propose the 
BBagging to improve the learning performance on the minority instances by 
proportionally increasing their sampling weights. The simulation results show that our 
proposed algorithm is competitive with other algorithms and can significantly improve 
the prediction accuracy of the minority instances. 

The proposed SERA framework is promising, and we have located several 
potential improvements path for this idea in the future. Our current simulation is based on 
a single run, and thus the statistical significance of SERA cannot be empirically proved at 
this point. In order to statistically justify the effectiveness of SERA, simulations on many 
trials are what we should explore in the future research. Besides, given the very limited 
volume of minority examples within the data chunk, better mechanisms, e.g. density 
estimation, need to be developed to measure the similarity between data chunks with 
different timestamps. Finally, there still exist some uncertainties about the post-balance 
ratio and the cost factor for BBagging in this work, which both require more adaptive and 
systematic mechanism to find the optimum values for them. 



 65

We also present an anomaly-based network intrusion detection algorithm based 
on KDE and SOM. We employ the KDE technique to estimate the probability density 
functions for the random variables used to describe an anomaly-based IDS and determine 
whether the network activities are normal or abnormal. However, huge volume of the 
observed data and the high computational cost of KDE can limit its usage in real-world 
applications. Therefore, we explore the learning and clustering capabilities of SOM, and 
use it to generate an approximation of the distribution of the input space in a compact 
manner. In this way, the number of kernels used in a kernel density estimator can be 
significantly reduced, and thus improve the efficiency for the intrusion detection. Our 
current algorithm focuses on univariate analysis. Therefore, in our future work, this 
algorithm will be extended to mutlivariate analysis of the network input parameters. 
Meanwhile, extensive experiments and simulations will be conducted over more 
real-world network intrusion data sets to evaluate the performance of the proposed 
algorithm. 

Finally in this project period, we propose a FPGA-based prototype system for general 
purpose and multi-task video and image processing. System level hardware architecture 
and detailed design strategies are presented. The final system is implemented using the 
Xilinx Virtex-II Pro development system with an onboard XC2VP30 FPGA chip. 
Synthesized results indicate the overall system utilizes only about 20% of logic resource, 
50% of memory on chip, and has total power consumption around 203 mw. This system 
provides a scalable and real-time reconfigurable platform to meet the requirements for 
many video processing applications. Furthermore, the reconfigurable and extendable 
characteristics of this system allow it to be easily modified to embed into different video 
and image processing scenarios. The effectiveness of the proposed prototype has been 
demonstrated by various experimental results. 

In the future work, it would be interesting to integrate more complicated video 
processing modules into this platform. For instance, based on the edge detection function 
implemented in this research, it will be useful to implement a robust objects recognition 
algorithm into this system. In addition, since machine learning techniques have been 
extensively used for video and image processing, it would be interesting to develop various 
learning algorithms based on this prototype. For instance, we are currently designing a 
FPGA-based incremental learning system for video applications. The key idea is to 
develop an incremental learning architecture in hardware to learn and accumulate 
knowledge for multiple objects recognition and localization. Motivated by our research in 
this paper, we believe that such a FPGA-based system will provide a power platform for 
many real-world video and image processing applications. 
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